How to solve for 1D non homogenous ODE by Finite element method
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am unable to input the dirichlet condition into this non homogenous ode. Please point out my mistake.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% -u" + u = - 5x + 4 0 < x <= 1 %%%%
%%%% u(0) = 0, u(1) = 2 %%%%
%%%% Exact solution u = (exp(x)*(3*exp(1) + 4))/(exp(2) - 1) - 5*x - (exp(-x)*(3*exp(1) + 4*exp(2)))/(exp(2) - 1) + 4 %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all;
format long;
N = 20;
x0 = 0;
xN = 1;
h = 1/N;
for j = 1:N+1
X(j) = x0 + (j-1)*h;
end
f = @(x)(- 5*x +4);
A = zeros(N+1,N+1);
F = zeros(N+1,1);
%%%% Local stiffness matrix %%%%
a = [1/h -1/h ; -1/h 1/h] ;
for i=1:N
phi1 = @(x)(X(i+1)-x)/h; %%%% linear basis function %%%%
phi2 = @(x)(x-X(i))/h; %%%% linear basis function %%%%
f1 = @(x)f(x)*phi1(x); %%%% integrand for load vector %%%%
f2 = @(x)f(x)*phi2(x); %%%% integrand for load vector %%%%
v(1,i) = gauss(f1,X(i),X(i+1),1); %%%% element wise values of
v(2,i) = gauss(f2,X(i),X(i+1),1); %%%% load vector
end
%%%% Assembling %%%%
for i=1:N
A([i i+1],[i i+1]) = A([i i+1],[i i+1]) + a;
F([i i+1],1) = F([i i+1],1) + v([1 2],i);
end
%%%% Dirichlet Boundary condition %%%%
% F(N+1,1) = F(N+1,1)+2;
fullnodes = [1:N+1];
%%%%% Dirichlet boundary condition %%%%%
freenodes=setdiff(fullnodes,[1]);
Uh = zeros(N+1,1);
Uh(N+1,1) = 2;
%%%% Approximate solution %%%%
Uh(freenodes)=A(freenodes,freenodes)\F(freenodes,1);
%%%% Exact solution %%%%
U = zeros(N+1,1);
for i =1:N+1
U(i) = (exp(X(i))*(3*exp(1) + 4))/(exp(2) - 1) - 5*X(i) - (exp(-X(i))*(3*exp(1) + 4*exp(2)))/(exp(2) - 1) + 4;
end
error = max(abs(U-Uh));
[U Uh]
plot(X,U,X,Uh,'o')
0 Kommentare
Antworten (1)
Torsten
am 10 Sep. 2024
Bearbeitet: Torsten
am 10 Sep. 2024
I usually set
A(1,1) = 1, F(1) = 0, A(N+1,N+1) = 1, F(N+1) = 2
and only loop from 2 to N here:
%%%% Assembling %%%%
for i=1:N
A([i i+1],[i i+1]) = A([i i+1],[i i+1]) + a;
F([i i+1],1) = F([i i+1],1) + v([1 2],i);
end
I don't know if this is "Finite-Element-like".
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!