
How to find center and radius of an arc from binarized image
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have image of anulus, I need to find center and radius of inner and outer arc 

0 Kommentare
Antworten (1)
Mathieu NOE
am 10 Sep. 2024
hello
this is what I can offer you today
you will need the attached function (CircleFitByTaubin.m) , and this Fex submission :
results

also you get the info's in the command window if you prefer
----------------------------
Circle # 1:
Re = 659.0384:
xc = 346.9044:
yc = 674.5627:
----------------------------
----------------------------
Circle # 2:
Re = 392.5529:
xc = 339.0362:
yc = 691.2823:
----------------------------
code :
filename = 'image.png';
%% read png file
% inpict = im2double(rgb2gray(imread(filename))); % for RGB pictures
inpict = imread(filename); % for B&W pictures
[m,n] = size(inpict);
% find values above threshold
[y,x] = find(inpict>0.5);
% flip y direction (on the data, not the plot))
y = m-y;
%% some manual work first
% remove left diagonal segment
ind = (x<300);
x(ind) = [];
y(ind) = [];
% remove top horizontal segment
ind = (y>600);
x(ind) = [];
y(ind) = [];
%% separate both curves
% Run DBSCAN Clustering Algorithm
% see Fex : https://fr.mathworks.com/matlabcentral/fileexchange/52905-dbscan-clustering-algorithm
epsilon=100;
MinPts=5;
X = [x y];
IDX=DBSCAN(X,epsilon,MinPts);
%% Plot Results
k=max(IDX);
Colors=hsv(k);
for i=0:k
Xi=X(IDX==i,:);
if i~=0
Style = 'x';
MarkerSize = 8;
Color = Colors(i,:);
else
Style = 'o';
MarkerSize = 6;
Color = [0 0 0];
end
if ~isempty(Xi)
%%
% circle fit here then plot
%%
par = CircleFitByTaubin(Xi);
% Output: Par = [a b R] is the fitting circle:
% center (a,b) and radius R
xc = par(1);
yc = par(2);
Re = par(3);
% display results in command window
disp(['----------------------------']);
disp([' Circle # ' num2str(i) ':']);
disp([' Re = ' num2str(Re) ':']);
disp([' xc = ' num2str(xc) ':']);
disp([' yc = ' num2str(yc) ':']);
disp(['----------------------------']);
% reconstruct circle from data
n=100;
th = (0:n)/n*2*pi;
xe = Re*cos(th)+xc;
ye = Re*sin(th)+yc;
plot(Xi(:,1),Xi(:,2),Style,'MarkerSize',MarkerSize,'Color',Color)
hold on
plot(xe,ye,'--','Color',Color)
title(' measured fitted circles')
text(xc-Re*0.5,yc + 0.75*Re,sprintf('center (%g , %g ); R=%g',xc,yc,Re))
axis equal
end
end
hold off;
axis equal;
grid on;
title(['DBSCAN Clustering (\epsilon = ' num2str(epsilon) ', MinPts = ' num2str(MinPts) ')']);
2 Kommentare
Mathieu NOE
am 2 Okt. 2024
my pleasure !
ifmy answer has fullfilled your expectations, do you mind accepting it ?
tx
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!