How to input a novel boundary condition for a coupled PDE system
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi all,
I am trying to simulate a coupled PDE system with a non typical boundary conditions using the pde1dm solver which is based on the pdepe solver in MATLAB.
My coupled PDE system is as such.
The system is solved for two time periods
For first time period
For s at the L.H.S we have
For s at the R.H.S we have
For species m at the L.H.S we have the to set m value to a constant
For species m at the R.H.S we have the no flux condition
For second time period
For s at the L.H.S and R.H.S we have the same such as
Also for the m R.H.S we have the same boundary condition.
But, for the species we have the L.H.S boundary condition for timr period . It is this boundary condtiuon that I am seeking help with. How can I go about implementing this on the L.H.S for .
function [c25, c2, vode] = pde1dm_PS_OCP_v1(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_r)
% Piecewise PDE Implementation
% Pulsing Simulation
% Constants Used in the Nernst Equation
n = 2; % No. of Electrons Involved
F = 96485.3329; % C/mol
R = 8.314; % J/(mol.K) or CV/(mol.K)
Temp = 273.15+20; % K
N = 21;
m = 0;
Area = 0.0011; % Geometric Area (cm^2)
m_layer = 4.13E-05; % m_layer (mol/cm^3)
D_m = 8.14E-08; % cm^2/s (De of polymer)
k = n*F*Area*l*m_layer;
% DIMENSIONLESS PARAMETERS
chi = linspace(0, 1, N);
tau = linspace(0, tau_M1, N); % Dimensionless Time
% FIRST POTENTIAL STEP
E0 = 0.22;
E_set = .350;
epsilon1 = ((n*F)/(R*Temp))*(E_set-E0); % Dimensionless Potential
c_M_ox = 1/(1+exp(-epsilon1)); % Mox BC
ic_arg_1 = {@(x)ones(size(N)) ; @(x)zeros(size(N))};
IC = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC = @(xl, yl, xr, yr, t)PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox);
sol1 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r), ...
IC, BC, chi, tau);
c1 = sol1(:, :, 1); % Substrate Conc.
c2 = sol1(:, :, 2); % Mox Conc.
% OPEN CIRCUIT POTENTIAL
tau2 = linspace(tau_M1, tau_M2, N); % Dimensionless Time
ic_arg_1 = {@(x)interp1(chi, sol1(N, :, 1), x) ; @(x)interp1(chi, sol1(N, :, 2), x)};
IC2 = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC2 = @(xl, yl, xr, yr, t, v)PDE_PSw_EK_BC_2(xl, yl, xr, yr, v);
xOde = [1, .9].';
ode_IC = @() ode_ICFun(tau_M1);
opts.vectorized='on';
% sol2 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), ...
% IC2, BC2, chi, tau2);
[sol2, vode] = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), ...
IC2, BC2, chi, tau2, @odeFunc, ode_IC, xOde(2));
% Concentration Profiles c(i, j, k)(Solutions)
c14 = [c1; sol2(:, :, 1)]; % Substrate Conc.
c25 = [c2; sol2(:, :, 2)]; % Mox Conc.
c36 = 1-c25; % Mred Conc.
mox = abs(sol2(:, 1, 2));
mred = 1-mox;
E_PS = E_set.*ones(1,N);
for counter2 = 1:N
E_OCP(counter2) = E0 + (((R*Temp)/(n*F).*(log(mox(counter2,:)./mred(counter2,:)))));
end
E_array = [E_PS, E_OCP];
figure(2);
plot(chi, c25(N,:));
xlabel('\chi'); ylabel('m_{ox}');
function [cc, ff, ss] = PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r)
% S; Mox;
cc = [ D_r; 1];
ff = [ 1; 1].*DcDx;
S_kin = ((gamma/eta)*(kappa^2)*c(1)*c(2))./...
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
M_kin = ((kappa^2).*c(1).*c(2))./...
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
ss = [-S_kin; -M_kin];
end
function c0 = PDE_ND_PS_EK_IC(x, ic_arg_1)
% Substrate; Mox;
c0 = [ic_arg_1{1}(x).'; ic_arg_1{2}(x).'];
end
% % % % % % % % % % % % % % % % For 0<tau_m<tau_1
function [pl, ql, pr, qr] = PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox)
% ---------------------
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% -------|-------------
% pl pr
% Substrate; Mediator;
pl = [0 ; yl(2)-c_M_ox];
ql = [1 ; 0];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
% % % % % % % % % % % % % % % % For tau_1<tau_m<tau_2
function [pl, ql, pr, qr] = PDE_PSw_EK_BC_2(xl, yl, xr, yr, t, v, vdot)
pl = [0 ; 0];
ql = [1 ; 1];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function f = odeFunc(x, t, c, DcDx, v, vdot)
f = (DcDx*(1E-03./(v(1)*(1-v(1)))))-vdot(1);
end
function v0=ode_ICFun(tau_0)
v0 = ones(tau_0);
end
end
0 Kommentare
Akzeptierte Antwort
Torsten
am 14 Aug. 2024
xOde = [0 1].'; % Define coupling points for ODE definition
function [pl, ql, pr, qr] = PDE_PSw_EK_BC_2(xl, yl, xr, yr, t, v, vdot)
...
pl(2) = yl(2) - v;
ql(2) = 0;
...
end
function f = odeFunc(x, t, c, DcDx, v, vdot)
% Assuming first index in DcDx and c is equation, second index is coupling point in xOde vector
% (might be vice versa, look up in the User's Guide of pde1dm)
f = DcDx(2,1) - k/(c(2,2)*(1-c(2,2))*vdot
end
function v0=ode_ICFun(tau_0)
v0 = m_ox %@t=0,chi=0
end
18 Kommentare
Torsten
am 15 Aug. 2024
Bearbeitet: Torsten
am 15 Aug. 2024
The reason for your problems is obvious: c2(N,1) = 1.
That means that you divide by 0 in the expression f=DcDx(2) - 8/(c(2)*(1-c(2)))*vdot(1) .
In my opinion, there is something wrong in the mathematical formulation of your problem or in the choice of the starting values of c2 from phase 1 in phase 2.
Weitere Antworten (1)
Bill Greene
am 20 Aug. 2024
Bearbeitet: Bill Greene
am 20 Aug. 2024
Here is my code to solve this problem with pde1dm based on my understanding of the description and included code. I'm not at all sure I understand the problem definition and since I know nothing about the physics of the problem, I have no idea whether this solution is actually correct.
function matlabAnswers_8_15_2024
kappa=1; eta=1; gamma=1; mu=1; tau_M1=1; tau_M2=2; l=1; D_r=1;
pde1dm_PS_OCP_v1(kappa, eta, gamma, mu, tau_M1, tau_M2, 1, 1);
end
function [c25, c14, mox, vode] = pde1dm_PS_OCP_v1(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_r)
% Piecewise PDE Implementation
% Pulsing Simulation
% Constants Used in the Nernst Equation
n = 2; % No. of Electrons Involved
F = 96485.3329; % C/mol
R = 8.314; % J/(mol.K) or CV/(mol.K)
Temp = 273.15+20; % K
Nx = 21;
Nt=15;
m = 0;
Area = 0.0011; % Geometric Area (cm^2)
m_layer = 4.13E-05; % m_layer (mol/cm^3)
D_m = 8.14E-08; % cm^2/s (De of polymer)
k = n*F*Area*l*m_layer;
% DIMENSIONLESS PARAMETERS
chi = linspace(0, 1, Nx);
tau1 = linspace(0, tau_M1, Nt); % Dimensionless Time
tau2 = [linspace(tau_M1+1e5*eps, tau_M2, Nt)];
% FIRST POTENTIAL STEP
E0 = 0.22;
E_set = .350;
epsilon1 = ((n*F)/(R*Temp))*(E_set-E0); % Dimensionless Potential
c_M_ox = 1/(1+exp(-epsilon1)); % Mox BC
IC = @(x) PDE_ND_PS_EK_IC(x);
BC = @(xl, yl, xr, yr, t,v,vDot) PDE_PS_EK_BC(xl, yl, xr, yr, t,v,vDot, c_M_ox, tau_M1, k);
pdef= @(x, t, c, DcDx) PDE_ND_PS_EK(chi, tau1, c, DcDx, kappa, eta, gamma, mu, D_r);
xOde=0;
odeIcF= @() ode_ICFun(IC, chi);
[sol1,sol1Ode] = pde1dm(m, pdef, IC, BC, chi, tau1, @odeFunc, odeIcF, xOde);
% figure; plot(tau1, sol1Ode, tau1, sol1(:,1,2));
% title 'mox at left end as a function of time'; grid;
IC2=@(x) icFun2(x, chi, sol1);
odeIcF2= @() ode_ICFun(IC2, chi);
[sol2,sol2Ode] = pde1dm(m, pdef, IC2, BC, chi, tau2, @odeFunc, odeIcF2, xOde);
sol=[sol1; sol2];
solOde=[sol1Ode; sol2Ode];
tau=[tau1 tau2];
s = sol(:, :, 1); % Substrate Conc.
mox = sol(:, :, 2); % Mox Conc.
figure; plot(tau, mox(:,1));
title 'mox at left end as a function of time'; grid;
figure; plot(tau, mox(:,end)); grid;
title 'mox at right end as a function of time';
figure; plot(chi, s(end,:));
title 's at final time'; grid;
figure; plot(chi, mox(end,:));
title 'mox at final time'; grid;
end
function [cc, ff, ss] = PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r)
% S; Mox;
cc = [ D_r; 1];
ff = [ 1; 1].*DcDx;
S_kin = ((gamma/eta)*(kappa^2)*c(1)*c(2))./...
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
M_kin = ((kappa^2).*c(1).*c(2))./...
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
ss = [-S_kin; -M_kin];
end
function c0 = PDE_ND_PS_EK_IC(x)
% Substrate; Mox;
c0 = [1 0]';
end
function c0 = icFun2(x, chi, sol1)
s1Final=squeeze(sol1(end,:,:));
c0=interp1(chi, s1Final, x)';
end
function [pl, ql, pr, qr] = PDE_PS_EK_BC(xl, yl, xr, yr, t,v,vDot, c_M_ox, tau_M1, k)
% ---------------------
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% -------|-------------
% pl pr
% Substrate; Mediator;
if t <= tau_M1
pl = [0 ; yl(2)-c_M_ox];
ql = [1 ; 0];
else
moxR=yr(2);
dMoxDTau=vDot;
p=-k/(moxR*(1-moxR))*dMoxDTau;
pl = [0 ; p];
ql = [1 ; 1];
end
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function F=odeFunc(t,v,vdot,x,u)
F=v-u(2);
end
function v0=ode_ICFun(icf,chi)
x0=chi(1);
c0=icf(x0);
v0 = c0(2);
end
1 Kommentar
Torsten
am 20 Aug. 2024
OP changed his problem description from
moxR=yr(2);
to
moxL=yl(2);
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!