Fitting multiple datasets with unique parameters using lsqcurvefit to a normalized function and constraints between datasets.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Thank you for taking the time to help. I will do my best to be clear and concise.
I have 3 sets of data (atttached), each with x and y data - not necesarilly the same length.
Each y(x) function can be normalized into p(t) using 4 parameters:
- A - a constant that is extracted from each individual y(x), 'A' looks like [A1, A2, A3]
- B - a fitting parameter unique to each y(x)
- C - a fitting parameter applied to all y(x)
- D - a constraint variable dependent on A and B applied to all y(x)
So the set looks something like:
I would like to use lsqcurvefit to fit my data to my function p(t) and output the unique (C and D) values.
I have a final constraint to increase the accuracy of lsqcurvefit: , where D is another global constant like C.
Where I'm at now, I want to adjust C and D to fit my function p(t) to y(x), but I don't know how to also include the unique A values for each y(x).
I've pasted my current code below where I am able to get an individual fit for each y(x) but without consistent C and D parameters.
%% Data analysis
Results = NaN(3,2); % Result [C,D] for each individual fitting
for t = 1:3
%TL is summary matrix of all y(x) for the 3 experiments, NaN fills in
%where some y(x) are shorter than others.
x = TL(~isnan(TL(:,2*t-1)),2*t-1); %extracts x values from TL
y = TL(~isnan(TL(:,2*t)),2*t); %extracts y values from TL
%P = parameters: P(1) = C | P(2) = D
%fun below is the normalization for p(t)
fun = @(P,x)A(t)*(1-1/(2*(1-P(1))))*(1.304*exp(-(P(2)*x/(r/1000)^2).^0.5)-0.304*exp(-0.254*P(2)*x/(r/1000)^2))+1/(2*(1-P(1)));
P0 = [0.4, 1*10^-9]; %Initial parameters
lb = [0.1, 1*10^-10]; %Lower bound
ub = [0.5, 1*10^-8]; %Upper bound
Results(t,:) = lsqcurvefit(fun,P0,x,y,lb,ub); %Result consolidation for individual fitting
subplot(3,1,t)
plot(x,y,'ko',x,fun(Results(t,:),x),'b-')
end
From looking at other posts on using lsqcurvefit with multiple datasets, I think my obstacle has come down to whether I should (1) run lsqcurvefit on all y(x) and somehow input the unique A constants or (2) run lsqcurvefit on individual y(x) and somehow correlate C and D to match between each fitting.
I hope this is presented clearly, looking forward to your thoughts and discussion - Thanks.
0 Kommentare
Antworten (1)
Torsten
am 8 Aug. 2024
Bearbeitet: Torsten
am 8 Aug. 2024
If your model functions share common parameters, you must run "lsqcurvefit" on all yi with all parameters present (in your case eight as far as I can see).
Since the computation of the simulated values is more complex than it can be done in a one-liner by a function handle, you should write a separate function for this.
3 Kommentare
Torsten
am 8 Aug. 2024
I see where you get the 8 parameters, but A and B are dependent on D.
Why do you define D at all as a fitting parameter if it can be replaced by A1/B1 ?
Is there a way to run lsqcurvefit varying two parameters and taking in a set of constants?
You don't need to "take constants in", you can just define them in the function where you supply the simulated yi.
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!