My question is what is the value i am getting as the output of my code.

1 Ansicht (letzte 30 Tage)
syms x
eqn = 0.5959 + 0.0321*(x^2.1)-0.184*(x^8)+0.0143*(x^2.5)-0.2359*(sqrt((1-x^4)/x^4));
solve(eqn == 0,x)
the results are given as
  3 Kommentare
VBBV
VBBV am 2 Aug. 2024
@Varun You could alternately use fsolve for the expression and solve it for defined initial value limits. Note that your equation/ function involves a term ((sqrt((1-x.^4)./x.^4))) which can potentially cause the result into a indefinite value. Hence, the initial value need to be more specific to solve this type of equation.
x0 = [0.01 1] % give an initial value excluding 0 !!!
x0 = 1x2
0.0100 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
eqn = @(x) 0.5959 + 0.0321*(x.^2.1)-0.184*(x.^8)+0.0143*(x.^2.5)-0.2359*(sqrt((1-x.^4)./x.^4));
options = optimoptions('fsolve','Display','iter'); % ^
[x] = fsolve(eqn,x0,options)
Norm of First-order Trust-region Iteration Func-count ||f(x)||^2 step optimality radius 0 3 5.56207e+06 1.11e+09 1 1 6 1.09835e+06 0.00500015 1.47e+08 1 2 9 216815 0.0231918 1.93e+07 1 3 12 42764 0.738655 2.54e+06 1 4 15 8428.05 0.771889 3.35e+05 1 5 18 1651.66 0.194943 4.43e+04 1 6 21 320.676 0.20026 5.87e+03 1 7 24 60.9821 0.257676 783 1 8 25 60.9821 1 783 1 9 28 11.0813 0.25 106 0.25 10 31 1.75585 0.116714 14.9 0.25 11 34 0.205127 0.118429 2.17 0.25 12 37 0.0107402 0.0945807 0.294 0.25 13 40 7.55946e-05 0.0365412 0.0207 0.25 14 43 5.37719e-09 0.00365487 0.000172 0.25 15 46 2.81969e-17 3.13519e-05 1.24e-08 0.25 Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
x =
0.6015 - 0.0000i -0.0344 - 1.1446i
real(x)
ans = 1x2
0.6015 -0.0344
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Arnav
Arnav am 2 Aug. 2024
Hi @Varun,
The result that you are getting is a closed form way of representing the solution of the equation. Here root(P(x),x,k) represents the kth root of the symbolic polynomial P(x). You can evaluate these roots numerically using the function vpa as follows:
syms x
eqn = 0.5959 + 0.0321*(x^2.1)-0.184*(x^8)+0.0143*(x^2.5)-0.2359*(sqrt((1-x^4)/x^4));
res = solve(eqn == 0,x);
numeric_res = vpa(res)
The numeric result obtained is:
0.6015191969401057095577237699673
- 0.60342554599494554515246506424316 - 0.0032524435318404812187506975163144i
- 0.60342554599494554515246506424316 + 0.0032524435318404812187506975163144i
- 0.0022957627114584795743384488144413 - 0.6148033016363615664866637134719i
- 0.0022957627114584795743384488144413 + 0.6148033016363615664866637134719i
- 0.034350766702267990632625142341669 - 1.1446441922416124914568634765747i
- 0.034350766702267990632625142341669 + 1.1446441922416124914568634765747i
0.045439493798166588383693273719136 - 1.14543346751870257491869864044i
0.045439493798166588383693273719136 + 1.14543346751870257491869864044i
- 1.1691779737703086214274911464114 - 0.029488409879496751528279391787196i
- 1.1691779737703086214274911464114 + 0.029488409879496751528279391787196i
1.1752945738347608763208400050921 - 0.037263119738081124633951256034582i
1.1752945738347608763208400050921 + 0.037263119738081124633951256034582i
You can refer to the below example for more information:
  2 Kommentare
Walter Roberson
Walter Roberson am 2 Aug. 2024
format long g
syms x
eqn = 0.5959 + 0.0321*(x^2.1)-0.184*(x^8)+0.0143*(x^2.5)-0.2359*(sqrt((1-x^4)/x^4));
F = matlabFunction(eqn)
F = function_handle with value:
@(x)sqrt(-1.0./x.^4.*(x.^4-1.0)).*(-2.359e-1)+x.^(5.0./2.0).*1.43e-2-x.^8.*(2.3e+1./1.25e+2)+x.^(2.1e+1./1.0e+1).*3.21e-2+5.959e-1
numeric_res = fzero(F, [1e-6 1])
numeric_res =
0.601519196940106

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Walter Roberson
Walter Roberson am 2 Aug. 2024
You are getting garbage values, for a garbage query.
You have used floating point quantities in a symbolic equation. You have used solve() on the equation. solve() is intended to find indefinitely precise solutions. It makes no sense to ask for indefinitely precise solutions to equations involving floating point values, since floating point values are inherently imprecise.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by