The Mathieu Equation—Stability for 2DOF whirlflutter system
4 Kommentare
Antworten (1)
5 Kommentare
Hi @Nikko,
I made modifications to your code and experimenting with it. However, I am too tired now, please take a look at the code below to give you some clues to find solution to your problem, when you execute code, it will display “Index in position 2 exceeds array bounds”. However, pay close attention to plot. You have to change parameters in code to find flaw in your code and fix the problem. At the moment, I am too tired. Hope to hear good news.
% Define parameters
N = 2; % Number of blades
I_thetaoverI_b = 2; % Moment of inertia pitch axis over I_b
I_psioverI_b = 2; % Moment of inertia yaw axis over I_b
C_thetaoverI_b = 0.00; % Damping coefficient over I_b
C_psioverI_b = 0.00; % Damping coefficient over I_b
h = 0.3; % rotor mast height, wing tip spar to rotor hub [m]
hoverR = 0.34;
R = h / hoverR; % radius [m]
gamma = 4; % lock number
V_knots = 325; % the rotor forward velocity [knots]
% Convert velocity from [knots] to [meters per second]
% 1 knot = 0.51444 meters per second
V = V_knots * 0.51444;
% Calculate angular velocity in radians per second
omega_rad_s = V / R;
% Convert angular velocity from radians per second to RPM
% 1 radian per second = (60 / (2 * pi)) RPM
Omega = omega_rad_s * (60 / (2 * pi));
% Frequency ranges
f_pitch = 0.01:5:80;
f_yaw = 0.01:5:80;
% Time periods for pitch and yaw
T_pitch = 1 ./ (2 * pi * f_pitch);
T_yaw = 1 ./ (2 * pi * f_yaw);
divergence_map = [];
Rdivergence_map = [];
unstable = [];
% Define the value of H_u
H_u = 1; % Replace with the actual value
% Define the values of T_pitch and T_yaw
T_pitch = [1, 2, 3]; % Replace with the actual values
T_yaw = [4, 5, 6]; % Replace with the actual values
% Define the values of I_psioverI_b, I_thetaoverI_b,
C_thetaoverI_b, C_psioverI_b, M_b, M_u, gamma, h, and V
I_psioverI_b = 0.5; % Replace with the actual value I_thetaoverI_b = 0.7; % Replace with the actual value C_thetaoverI_b = 0.3; % Replace with the actual value C_psioverI_b = 0.2; % Replace with the actual value M_b = 0.9; % Replace with the actual value M_u = 0.8; % Replace with the actual value gamma = 0.6; % Replace with the actual value h = 0.1; % Replace with the actual value V = 0.5; % Replace with the actual value
% Initialize the matrices to store the results
unstable = [];
divergence_map = [];
Rdivergence_map = [];
% Modify the loop to iterate over time points
for i = 1:length(T_pitch)
for j = 1:length(T_yaw)
T = max(T_pitch(i), T_yaw(j)); % Use the maximum period to cover all dynamics
t_steps = linspace(0, T, 100); % Time steps within one period for t = t_steps
% Angular frequencies for the current time point
w_omega_pitch = 2 * pi / T_pitch(i);
w_omega_yaw = 2 * pi / T_yaw(j);
K_psi = (w_omega_pitch^2) * I_psioverI_b;
K_theta = (w_omega_yaw^2) * I_thetaoverI_b;
% Calculate matrices at time t using harmonic motion expressions
phi = pi * t / T; % Phase variation over the period
% Define inertia matrix [M]
M_matrix = [I_thetaoverI_b + 1 + cos(2*phi), -sin(2*phi); -sin(2*phi), I_psioverI_b + 1 - cos(2*phi)];
% Define damping matrix [D]
D11 = C_thetaoverI_b + h^2*gamma*H_u*(1 - cos(2*phi)) - gamma*M_b*(1 + cos(2*phi)) - (2 + 2*h*gamma*M_u)*sin(2*phi);
D12 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) - 2*(1 + cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
D21 = h^2*gamma*H_u*sin(2*phi) + gamma*M_b*sin(2*phi) + 2*(1 - cos(2*phi)) - 2*h*gamma*M_u*cos(2*phi);
D22 = C_psioverI_b + h^2*gamma*H_u*(1 + cos(2*phi)) - gamma*M_b*(1 - cos(2*phi)) + (2 + 2*h*gamma*M_u)*sin(2*phi); D_matrix = [D11, D12; D21, D22];
% Define stiffness matrix [K]
K11 = K_theta - h*gamma*V*H_u*(1 - cos(2*phi)) + gamma*V*M_u*sin(2*phi);
K12 = -h*V*gamma*H_u*sin(2*phi) + gamma*V*M_u*(1 + cos(2*phi));
K21 = -h*gamma*V*H_u*sin(2*phi) - gamma*V*M_u*(1 - cos(2*phi));
K22 = K_psi - h*gamma*V*H_u*(1 + cos(2*phi)) - gamma*V*M_u*sin(2*phi);
K_matrix = [K11, K12; K21, K22];
% Compute the system matrices
M11 = M_matrix(1, 1); M12 = M_matrix(1, 2); M21 = M_matrix(2, 1); M22 = M_matrix(2, 2);
D11 = D_matrix(1, 1); D12 = D_matrix(1, 2); D21 = D_matrix(2, 1); D22 = D_matrix(2, 2);
K11 = K_matrix(1, 1); K12 = K_matrix(1, 2); K21 = K_matrix(2, 1); K22 = K_matrix(2, 2);
% Find the roots of the polynomial equation
P0 = M11*M22 - M12*M21;
P1 = (- D11*M22*1j - D22*M11*1j + M12*D21*j + D12*M21*j);
P2 = (D11*D22*(1j)^2 - K22*M11 - K11*M22 - D12*D21*(1j)^2 + M12*K21 + M21*K12);
P3 = (D11*K22*1j - D12*K21*1j - D21*K12*1j + D22*K11*1j);
P4 = K11*K22 - K12*K21;
P = roots([P0, P1, P2, P3, P4]);
r = 1 * P;
% Flutter
for k = 1:length(r)
if (real(r(k)) > 0)
if (imag(r(k)) <= 0)
if size(unstable, 1) < k
unstable = [unstable; zeros(k - size(unstable, 1), 3)];
end
unstable(k, :) = [phi, K_psi, K_theta];
% Proximity check for 1/Ω divergence
freq_1_over_Omega = 0.1; % Replace with the actual value
if abs(real(r(k)) - freq_1_over_Omega) < 0.1
if size(Rdivergence_map, 1) < k
Rdivergence_map = [Rdivergence_map; zeros(k -
size(Rdivergence_map, 1), 3)];
end
Rdivergence_map(k, :) = [phi, K_psi, K_theta];
end
end
end
end
% Divergence
if (real(det(K_matrix)) < 0)
if size(divergence_map, 1) < k
divergence_map = [divergence_map; zeros(k -
size(divergence_map, 1), 3)];
end
divergence_map(k, :) = [phi, K_psi, K_theta];
end
end
end
end
% Plotting
figure;
scatter3(unstable(:,1), unstable(:,2), unstable(:,3), 'r',
'filled');
hold on;
scatter3(Rdivergence_map(:,1), Rdivergence_map(:,2),
Rdivergence_map(:,3), 'g', 'filled');
hold on;
scatter3(divergence_map(:,1), divergence_map(:,2),
divergence_map(:,3), 'b', 'filled');
xlabel('Phi');
ylabel('K_psi');
zlabel('K_theta');
legend('Unstable', '1/Omega Divergence', 'Divergence');
title('Flutter Analysis Results');
Please see attached plot.
Good luck!
Siehe auch
Kategorien
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!