How can I clear an error "The expression to the left of the equals sign is not a valid target for an assignment?"
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I tried to solve a problem (see the attachments). But I gor an error "The expression to the left of the equals sign is not a valid target for an assignment". How to solve this issue.
function plot_velocity_vs_eta()
% Parameters
A = 0.5;
Gr = 0.7;
Gc = 0.5;
Kp = 3.0;
beta = 0.5;
Pr = 0.3;
Df = 0.2;
Sc = 0.1;
L0 = 0.5;
Sr = 0.3;
M = [1,2,3,4,5];
% Initialize plot
figure;
hold on;
% Iterate over each Prandtl number
for i = 1:length(M_values)
M = M_values(i);
% Define the system of equations
equations = @(eta, y) [
dy(1)=y(2);
dy(2)=y(3);
dy(3)=(0.5*eta*A*y(3)-Gr*y(4)-Gc*y(6)+(M+Kp+A)*y(2))/(1+(1/beta));
dy(4)=y(5);
dy(5)=(Pr*(0.5*A*eta*y(5))-Pr*Df*Sc*(0.5*eta*A*y(7)+2*A*y(6)-L0*y(6)))/(1-(Pr*Df*Sc*Sr));
dy(6)=y(7);
dy(7)=(Sc*(0.5*eta*A*y(7)+2*A*dy(6))-Sr*Pr(0.5*A*eta*y(5)+2*A*y(4)))/(1-(Sr*Df*Pr));
];
% Define the boundary conditions function
bc = @(ya, yb) boundary_conditions(ya, yb);
% Solve the equations
eta_span = [0, 10];
initial_conditions = [0; 1; 0; 0; 1; 0; 1]; % Initial guesses for f, f', theta, phi, f'', phi'
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
[eta, solution] = ode45(equations, eta_span, initial_conditions, options);
% Calculate velocity (f'(eta))
velocity = solution(:, 2);
% Plot velocity against eta
plot(eta, velocity, '-', 'LineWidth', 2, 'DisplayName', sprintf('M = %.2f', M));
end
% Add labels and legend
xlabel('\eta');
ylabel('Velocity (f''(\eta))');
title('Velocity Profile for Different M Numbers');
legend('Location', 'best');
grid on;
hold off;
end
function res = boundary_conditions(ya, yb)
Bi1 = 0.5;
Bi2 = 0.5;
K0 = 0.3;
% Boundary conditions
res = [
ya(2)= 1 + K0*ya(3);
ya(5) = - Bi1*(1-ya(4));
ya(7) = - Bi2*(1-ya(6));
yb(2) = 0;
yb(4) = 0;
yb(6) = 0;
];
end
0 Kommentare
Akzeptierte Antwort
Steven Lord
am 25 Jul. 2024
You cannot use assignment inside the body of an anonymous function. Change this:
% Define the system of equations
equations = @(eta, y) [
dy(1)=y(2);
dy(2)=y(3);
dy(3)=(0.5*eta*A*y(3)-Gr*y(4)-Gc*y(6)+(M+Kp+A)*y(2))/(1+(1/beta));
dy(4)=y(5);
dy(5)=(Pr*(0.5*A*eta*y(5))-Pr*Df*Sc*(0.5*eta*A*y(7)+2*A*y(6)-L0*y(6)))/(1-(Pr*Df*Sc*Sr));
dy(6)=y(7);
dy(7)=(Sc*(0.5*eta*A*y(7)+2*A*dy(6))-Sr*Pr(0.5*A*eta*y(5)+2*A*y(4)))/(1-(Sr*Df*Pr));
];
to:
% Define the system of equations
equations = @(eta, y) [
y(2);
y(3);
(0.5*eta*A*y(3)-Gr*y(4)-Gc*y(6)+(M+Kp+A)*y(2))/(1+(1/beta));
y(5);
(Pr*(0.5*A*eta*y(5))-Pr*Df*Sc*(0.5*eta*A*y(7)+2*A*y(6)-L0*y(6)))/(1-(Pr*Df*Sc*Sr));
y(7);
(Sc*(0.5*eta*A*y(7)+2*A*dy(6))-Sr*Pr(0.5*A*eta*y(5)+2*A*y(4)))/(1-(Sr*Df*Pr));
];
You will also need to change your boundary condition function. Or actually, since you never use it except in the definition of the anonymous function bc and never use that anonymous function, just eliminate bc and your boundary_conditions function entirely.
Or if your use of ode45 is just for practice in learning how to call the differential equation solvers and you really want to solve this boundary value problem rather than an ordinary differential equation, see the bvp4c or bvp5c functions. The examples on those documentation pages or on the "Solving Boundary Value Problems" topic linked from the end of those function pages should provide you with examples you can adapt for your equations.
0 Kommentare
Weitere Antworten (1)
Torsten
am 25 Jul. 2024
You have seven differential equations, but you only specify six boundary conditions. That's mathematically incorrect.
plot_velocity_vs_eta()
function plot_velocity_vs_eta()
% Parameters
A = 0.5;
Gr = 0.7;
Gc = 0.5;
Kp = 3.0;
beta = 0.5;
Pr = 0.3;
Df = 0.2;
Sc = 0.1;
L0 = 0.5;
Sr = 0.3;
M_values = [1,2,3,4,5];
% Initialize plot
figure;
hold on;
% Iterate over each Prandtl number
for i = 1:length(M_values)
M = M_values(i);
% Define the system of equations
equations = @(eta,y) ...
[y(2);...
y(3);...
(0.5*eta*A*y(3)-Gr*y(4)-Gc*y(6)+(M+Kp+A)*y(2))/(1+1/beta);...
y(5);...
(Pr*0.5*A*eta*y(5)-Pr*Df*Sc*(0.5*eta*A*y(7)+2*A*y(6)-L0*y(6)))/(1-Pr*Df*Sc*Sr);...
y(7);...
(Sc*(0.5*eta*A*y(7)+2*A*y(7))-Sr*Pr*(0.5*A*eta*y(5)+2*A*y(4)))/(1-Sr*Df*Pr)];
% Define the boundary conditions function
bc = @(ya, yb) boundary_conditions(ya, yb);
% Solve the equations
eta_span = linspace(0,10,100);
initial_conditions = bvpinit(eta_span,[0; 1; 0; 0; 1; 0; 1]); % Initial guesses for f, f', theta, phi, f'', phi'
options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
sol = bvp4c(equations, bc, initial_conditions, options);
% Calculate velocity (f'(eta))
velocity = sol.y(2,:);
eta = sol.x;
% Plot velocity against eta
plot(eta, velocity, '-', 'LineWidth', 2, 'DisplayName', sprintf('M = %.2f', M));
end
% Add labels and legend
xlabel('\eta');
ylabel('Velocity (f''(\eta))');
title('Velocity Profile for Different M Numbers');
legend('Location', 'best');
grid on;
hold off;
end
function res = boundary_conditions(ya, yb)
Bi1 = 0.5;
Bi2 = 0.5;
K0 = 0.3;
% Boundary conditions
res = [ya(2)-(1+K0*ya(3));...
ya(5)-(-Bi1*(1-ya(4)));...
ya(7)-(-Bi2*(1-ya(6)));...
yb(2);...
yb(4);...
yb(6)];
end
Siehe auch
Kategorien
Mehr zu Boundary Value Problems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!