I have Backpropagation doubt

1 Ansicht (letzte 30 Tage)
jvbx
jvbx am 24 Jul. 2024
Kommentiert: jvbx am 25 Jul. 2024
I'm trying to do neural network with 2 hidden layers and one neuron in the output layer without any toolboxes and just with matrix and vectors multiplications. To do this, I created fictional simple data as below to help me in this task:
%Data
x = 1:1000;
y1 = sind(x);
y2 = sind(x+30);
y3 = cosd(x);
y4 = cosd(x+30);
y5 = cosd(x+45);
% y6 will be the desired output data taht I would like my neural network
% try to predict
y6 = (y1 + y2 + y3 + y4 + y5);
Then, I coded as I thought to be be the right way, but my neural network can´t reach a good result, as below:
My doubt is if the result isn´t good because my implementation isn´t right or because I need to add more mechanisms im my neural network (like momentum, regularization and etc.) ?
I will post my code below sorry about the naem of some variables, but originally I wrote this code in portuguese. I will comment the code to help undestand it
%Nueral network achictecture
n_h1 = 10;
n_h2 = 11;
n_out = 1;
%Adjustable parameters
w1 = rand(5,n_h1);
b1 = ones(1,n_h1)*rand(1,1);
w2 = rand(n_h1,n_h2);
b2 = ones(1,n_h2)*rand(1,1);
w_out = rand(n_h2,n_out);
b_out = ones(1,n_out)*rand(1,1);
sig_a = 1;
learning_rate = 0.001;
limiar = 0.002;
%Helpful variables
max_epocas = 1000;
conj_entrada = [y1;y2;y3;y4;y5];
erros_epoca = [];
%Backpropagation
for epoch = 1:max_epocas
for i = 1:size(conj_entrada,2)
if i ==1
soma = 0;
else
end
enter = conj_entrada(:,i);
h1_in = [w1;b1]'*[enter;1];
h1_out = sig(h1_in,sig_a,'False');
h2_in = [w2;b2]'*[h1_out;1];
h2_out = sig(h2_in,sig_a,'False');
saida_in = [w_out;b_out]'*[h2_out;1];
saida_out = saida_in;
erro = y6(i) - saida_out;
soma = soma + (erro^2);
%Here starts the part of the code where the gradients are being
%calculated. Note that, here, I tried to folllow the chain rule.
%let me try to help in the understanding. Saida in portuguese is
%like output in english so when you read ,for example,
%d_erro_d_saida_out you need to know that this is the derivative of
%the error in relation with the output of the output layer. In the
%same way, entrada means input and pesos means weights
%output layer
%chain rule
d_erro_d_saida_out = -1*erro;
d_saida_d_entrada_out = 1; %linear
grad_saida = erro*d_saida_d_entrada_out;
d_entrada_d_pesos_out = h2_out;
d_erro_d_pesos_out = d_erro_d_saida_out*d_saida_d_entrada_out*d_entrada_d_pesos_out;
% Update the wights and bias
w_out = w_out -learning_rate*d_erro_d_pesos_out;
b_out = b_out -learning_rate*d_erro_d_saida_out*d_saida_d_entrada_out;
%Second hidden layer (The neighbor layer of the output layer)
%chain rule
d_erro_d_saida_h2 = -1*w_out*grad_saida;
d_saida_d_entrada_h2 = sig(h2_in,sig_a,'True');
grad_h2 = sum(grad_saida)*d_saida_d_entrada_h2;
d_entrada_d_pesos_h2 = h1_out;
d_erro_d_pesos_h2 = d_entrada_d_pesos_h2*grad_h2';
% Update the wights and bias
w2 = w2 -1*learning_rate*d_erro_d_pesos_h2;
b2 = b2 -1*learning_rate*sum(d_erro_d_saida_h2.*d_saida_d_entrada_h2,1);
%First hidden layer (The neighbor layer of the seccond hidden layer)
%chain rule
d_erro_d_saida_h1 = -1*w2*grad_h2;
d_saida_d_entrada_h1 = sig(h1_in,sig_a,'True');
grad_h1 = sum(grad_h2)*d_saida_d_entrada_h1; %então daqui, tem que sair um 3x1
d_entrada_d_pesos_h1 = enter;
d_erro_d_pesos_h1 = d_entrada_d_pesos_h1*grad_h1'; %a segunda variável tem que resultar em um 1x3
% Update the wights and bias
w1 = w1 -1*learning_rate*d_erro_d_pesos_h1;
b1 = b1 -1*learning_rate*sum(d_erro_d_saida_h1.*d_saida_d_entrada_h1,1);
end
erro_atual = (soma/(2*size(x,2)));
erros_epoca = [erros_epoca;erro_atual];
if erros_epoca(epoch) <limiar
break
else
end
end
%testing the output of neural network
vetor_teste = 1:1000;
resposta_teste = zeros(1,size(vetor_teste,2));
for i = 1:size(vetor_teste,2)
enter_teste = conj_entrada(:,i);
h1_in_teste = [w1;b1]'*[enter_teste;1];
h1_out_teste = sig(h1_in_teste,sig_a,'False');
h2_in_teste = [w2;b2]'*[h1_out_teste;1];
h2_out_teste = sig(h2_in_teste,sig_a,'False');
saida_in_teste = [w_out;b_out]'*[h2_out_teste;1];
saida_out_teste = saida_in_teste; % a função de saída é linear;
resposta_teste(i) = saida_out_teste;
end
plot(1:size(erros_epoca,1),erros_epoca);
% plot(x,y3,'b',vetor_teste,resposta_teste,'r');
The code of my sigmoid activation function is below:
function [vetor_saida] = sig(vetor_entrada, const1, derivative)
if strcmp(derivative, 'False') == 1
vetor_saida = 1 ./ (1 + exp(-const1 * vetor_entrada));
else
sig_value = sig(vetor_entrada, const1, 'False');
vetor_saida = const1 * sig_value .* (1 - sig_value);
end
end

Akzeptierte Antwort

Karan Singh
Karan Singh am 25 Jul. 2024
Bearbeitet: Karan Singh am 25 Jul. 2024
Hi @jvbx,
I dont think you need to change much but just expriment with the current values, here are a few points that I have found, please have take at them-
  • Instead of initializing weights and biases with rand, consider using a more sophisticated initialization method like Xavier or He initialization, which can help in faster convergence.
  • Your learning rate might be too low. Try experimenting with different learning rates (e.g., 0.01, 0.1).
  • You are using a linear activation function for the output layer. Depending on the nature of your problem, you might want to use a different activation function, i have used sigmoid.
x = 1:1000;
y1 = sind(x);
y2 = sind(x+30);
y3 = cosd(x);
y4 = cosd(x+30);
y5 = cosd(x+45);
% y6 will be the desired output data taht I would like my neural network
% try to predict
y6 = (y1 + y2 + y3 + y4 + y5);
% Neural network architecture
n_h1 = 10;
n_h2 = 11;
n_out = 1;
% Adjustable parameters with Xavier initialization
w1 = randn(5, n_h1) * sqrt(2/5);
b1 = randn(1, n_h1) * sqrt(2/5);
w2 = randn(n_h1, n_h2) * sqrt(2/n_h1);
b2 = randn(1, n_h2) * sqrt(2/n_h1);
w_out = randn(n_h2, n_out) * sqrt(2/n_h2);
b_out = randn(1, n_out) * sqrt(2/n_h2);
sig_a = 1;
learning_rate = 0.01; % Adjusted learning rate
limiar = 0.002;
% Helpful variables
max_epocas = 1000;
conj_entrada = [y1; y2; y3; y4; y5];
erros_epoca = [];
% Backpropagation
for epoch = 1:max_epocas
soma = 0;
for i = 1:size(conj_entrada, 2)
enter = conj_entrada(:, i);
h1_in = [w1; b1]' * [enter; 1];
h1_out = sig(h1_in, sig_a, 'False');
h2_in = [w2; b2]' * [h1_out; 1];
h2_out = sig(h2_in, sig_a, 'False');
saida_in = [w_out; b_out]' * [h2_out; 1];
saida_out = saida_in; % Linear activation for output layer
erro = y6(i) - saida_out;
soma = soma + (erro^2);
% Gradient calculation and weight updates
% Output layer
d_erro_d_saida_out = -erro;
d_saida_d_entrada_out = 1; % Linear activation
grad_saida = d_erro_d_saida_out * d_saida_d_entrada_out;
d_entrada_d_pesos_out = h2_out;
d_erro_d_pesos_out = d_entrada_d_pesos_out * grad_saida';
% Update the weights and biases
w_out = w_out - learning_rate * d_erro_d_pesos_out;
b_out = b_out - learning_rate * grad_saida;
% Second hidden layer
d_erro_d_saida_h2 = w_out * grad_saida;
d_saida_d_entrada_h2 = sig(h2_in, sig_a, 'True');
grad_h2 = d_erro_d_saida_h2 .* d_saida_d_entrada_h2;
d_entrada_d_pesos_h2 = h1_out;
d_erro_d_pesos_h2 = d_entrada_d_pesos_h2 * grad_h2';
% Update the weights and biases
w2 = w2 - learning_rate * d_erro_d_pesos_h2;
b2 = b2 - learning_rate * grad_h2';
% First hidden layer
d_erro_d_saida_h1 = w2 * grad_h2;
d_saida_d_entrada_h1 = sig(h1_in, sig_a, 'True');
grad_h1 = d_erro_d_saida_h1 .* d_saida_d_entrada_h1;
d_entrada_d_pesos_h1 = enter;
d_erro_d_pesos_h1 = d_entrada_d_pesos_h1 * grad_h1';
% Update the weights and biases
w1 = w1 - learning_rate * d_erro_d_pesos_h1;
b1 = b1 - learning_rate * grad_h1';
end
erro_atual = (soma / (2 * size(x, 2)));
erros_epoca = [erros_epoca; erro_atual];
if erros_epoca(epoch) < limiar
break;
end
end
% Testing the output of neural network
vetor_teste = 1:1000;
resposta_teste = zeros(1, size(vetor_teste, 2));
for i = 1:size(vetor_teste, 2)
enter_teste = conj_entrada(:, i);
h1_in_teste = [w1; b1]' * [enter_teste; 1];
h1_out_teste = sig(h1_in_teste, sig_a, 'False');
h2_in_teste = [w2; b2]' * [h1_out_teste; 1];
h2_out_teste = sig(h2_in_teste, sig_a, 'False');
saida_in_teste = [w_out; b_out]' * [h2_out_teste; 1];
saida_out_teste = saida_in_teste; % Linear activation for output layer
resposta_teste(i) = saida_out_teste;
end
plot(1:size(erros_epoca, 1), erros_epoca);
% plot(x, y3, 'b', vetor_teste, resposta_teste, 'r');
% Sigmoid activation function
function [vetor_saida] = sig(vetor_entrada, const1, derivative)
if strcmp(derivative, 'False') == 1
vetor_saida = 1 ./ (1 + exp(-const1 * vetor_entrada));
else
sig_value = sig(vetor_entrada, const1, 'False');
vetor_saida = const1 * sig_value .* (1 - sig_value);
end
end
  1 Kommentar
jvbx
jvbx am 25 Jul. 2024
Thanks for you answer. I will code your suggestions and follow improving my code.
A couple of hours after post my doubt, I noticed that i was doing a litle mistake because the desired output value was in [-3,+3] interval or something like this, which off course is out of the range of sigmoidal function.Then I just modified y6 to stay in the [0,1].
With this, The code worked despite the neural network still need a lot of epochs to reach the desired error.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by