solving linear system with decomposition(A,'qr') and qr(A) produce different results
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Qiang Li
am 24 Jul. 2024
Kommentiert: Christine Tobler
am 24 Jul. 2024
load post.mat
x1 = decomposition(CA,'qr')\b_f;
[qq2,rr2,pp2] = qr(CA);
x2= pp2 * (rr2\(qq2'*b_f));
[qq3,rr3,pp3] = qr(CA,"econ","vector");
x3(pp3,:) = rr3\(qq3'*b_f);
any(x1-x2~=0)
any(x3-x2~=0)
I know that the CA matrix is ill-conditioned. But that doesn't explain the difference in solution, right?
Also, solving the system using decomposition(CA,'lu') and lu(CA) produce the same results. So why not the 'qr' pair?
0 Kommentare
Akzeptierte Antwort
Christine Tobler
am 24 Jul. 2024
There are two reasons that the results don't match:
1) When the matrix is not full-rank, the QR-based solver in decomposition only uses the upper left triangle of the R matrix returned from QR. I have replicated this in output x3 in the code below.
2) The matrix Q in decomposition is stored in a more compact format (Householder reflectors) than the one returned by the QR function. This results in some differences on the level of round-off error.
load post.mat
x1 = decomposition(CA,'qr')\b_f;
[qq2,rr2,pp2] = qr(CA);
x2= pp2 * (rr2\(qq2'*b_f));
norm(x1 - x2)
rk = 44;
m = size(CA, 1);
nrhs = size(b_f, 2);
[qq2,rr2,pp2] = qr(CA);
x3 = pp2 * [(rr2(1:rk, 1:rk)\(qq2(:, 1:rk)'*b_f)); zeros(m-rk, nrhs)];
norm(x1 - x3)
2 Kommentare
Christine Tobler
am 24 Jul. 2024
Yes, it's initially coming from point (2). This is amplified by the fact that matrix CA is ill-conditioned (max / min singular value is about 3e24), which means that the full matrix R is also ill-conditioned, and so the application of R\(Q'*b) takes a small difference in Q'*b and amplifies it a lot.
While RankTolerance=1e-12 doesn't seem particularly tiny, this is an absolute tolerance (not scaled by the maximum singular value of A), meaning it corresponds to about 1e-25 in relative terms.
load post.mat
max(svd(CA))
min(svd(CA))
cond(CA)
[qq2,rr2,pp2] = qr(CA);
cond(rr2)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!