How I customize self attention layer for identifying wafer defects?
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sharith Dhar
am 13 Jul. 2024
Kommentiert: Sharith Dhar
am 15 Jul. 2024
how I used customize multi head self attention in the CNN network for detecting wafer defects ? please explain with example
0 Kommentare
Akzeptierte Antwort
Shantanu Dixit
am 15 Jul. 2024
Hi Sharith,
It is my understanding that you want to add and customize self-attention in the CNN network for detecting wafer defects.
You can define a CNN-based architecture and add a self-attention layer in the end using ‘selfAttentionLayer’. The function takes in two parameters, i.e, ‘NumHeads’ and ‘NumKeyChannels’ using which you can change the number of heads and the dimensions of key vector.
Below is a reference code for the model architecture:
layers = [
imageInputLayer([28 28 1], 'Name', 'input')
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
flattenLayer('Name', 'flatten')
selfAttentionLayer(4, 32, 'Name', 'self_attention')
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
The above code defines a CNN based architecture incorporating Multi headed self-attention (MHSA) for ten class classification.
Refer to the below MathWorks documentation for more information:
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!