Formatting Data in dlarray for Deep Learning Models
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello there. I have data stored in a cell array that I am trying to convert to a dlarray format. The data I am trying to convert is stored in "XTrain" and is a 1x9 cell with each cell containing a 3x541 double. The 9 cells coreespond to the 9 trials (Batches), and for each trial theere is the 3 is the three input channels of data and corresponding to the 541 timesteps for that trial. As shown here:
I want to convert this to a dlarray with 9 batches, 3 channels, and 541 time steps. When I run the following code:
XTrain= dlarray(cat(3,Xtrain{:}),'CTB')
I do get XTrain = 3(C) x 9 (B) x 541 (T) dlarray, but the data looks like this:
XTrain:
(:,:,1) =
-9.8044 -9.8147 -9.8693 -9.8247 -9.8124 -9.8727 -9.8543 -9.8656 -9.8525
-0.2282 -0.2896 -0.2260 -0.3172 -0.2189 -0.3087 -0.1495 -0.2691 -0.3280
0.7071 0.7812 0.4556 0.6039 0.1103 0.1425 0.0086 -0.0670 0.3715
(:,:,2) =
-9.8104 -9.8155 -9.8573 -9.8475 -9.8178 -9.8778 -9.8626 -9.8563 -9.8679
-0.2714 -0.3503 -0.2347 -0.3274 -0.2795 -0.3116 -0.1470 -0.2499 -0.3460
0.7076 0.7897 0.4830 0.5738 0.1197 0.1358 0.0611 -0.1045 0.4273
(:,:,3) =
-9.7981 -9.8225 -9.8534 -9.8293 -9.8822 -9.8726 -9.8225 -9.8701 -9.8697
-0.2643 -0.3474 -0.2172 -0.3436 -0.2872 -0.3388 -0.1918 -0.2574 -0.3647
0.7142 0.7598 0.4382 0.5934 0.1157 0.1331 0.0844 -0.1184 0.4391
(:,:,4) =
-9.8505 -9.8007 -9.8387 -9.8374 -9.8862 -9.8430 -9.8153 -9.8652 -9.8377
-0.2488 -0.3729 -0.1999 -0.3266 -0.2296 -0.3341 -0.1930 -0.2296 -0.4105
0.7074 0.7723 0.4861 0.6090 0.1126 0.1307 0.0286 -0.0994 0.4614
(:,:,5) =
-9.8193 -9.7711 -9.8500 -9.8353 -9.9168 -9.8344 -9.8497 -9.8225 -9.7706
-0.2927 -0.3913 -0.1949 -0.3394 -0.2077 -0.3220 -0.2130 -0.2623 -0.3908
0.7444 0.7260 0.5198 0.6132 0.1354 0.1461 0.0019 -0.1226 0.4879
(:,:,6) =
-9.8391 -9.8163 -9.8085 -9.8183 -9.8220 -9.8489 -9.8214 -9.8409 -9.7316
-0.2791 -0.3945 -0.2150 -0.3333 -0.2189 -0.3273 -0.2397 -0.2116 -0.4483
0.7311 0.7238 0.4837 0.6277 0.1575 0.1267 0.0267 -0.0669 0.5399
(:,:,7) =
-9.8431 -9.8050 -9.8663 -9.8534 -9.8596 -9.8537 -9.8629 -9.8854 -9.7257
-0.2728 -0.3573 -0.2141 -0.3437 -0.2528 -0.3514 -0.1938 -0.2198 -0.4149
0.7381 0.6826 0.4767 0.5633 0.1433 0.1235 0.0609 -0.0852 0.5617
(:,:,8) =
-9.7986 -9.8074 -9.8325 -9.8184 -9.9066 -9.8487 -9.9236 -9.9240 -9.7185
-0.2986 -0.3460 -0.1595 -0.3355 -0.2499 -0.3389 -0.2061 -0.2021 -0.3813
0.7847 0.7369 0.5120 0.5438 0.1401 0.1474 0.0270 -0.0899 0.5602
(:,:,9) =
-9.8640 -9.8395 -9.8394 -9.8030 -9.8728 -9.8696 -9.9135 -9.8750 -9.8521
-0.2816 -0.3459 -0.2358 -0.3439 -0.2792 -0.3156 -0.1948 -0.2322 -0.2927
0.7056 0.7309 0.5211 0.5627 0.1395 0.1210 0.0156 -0.0729 0.4990
(:,:,10) =
-9.7958 -9.8271 -9.8320 -9.8375 -9.8670 -9.8540 -9.8830 -9.8667 -9.8494
-0.2916 -0.3218 -0.2379 -0.3354 -0.2923 -0.3621 -0.1915 -0.2537 -0.3228
0.7503 0.7005 0.5049 0.5413 0.1232 0.1500 0.0190 -0.1062 0.4945
(:,:,11) =
-9.8675 -9.8573 -9.8152 -9.8361 -9.8155 -9.8488 -9.8627 -9.8440 -9.8810
-0.2476 -0.3143 -0.2841 -0.3485 -0.2497 -0.3293 -0.2063 -0.2264 -0.3183
0.6469 0.7087 0.4956 0.5453 0.1404 0.1461 0.0213 -0.0958 0.4852
(:,:,12) =
-9.8271 -9.8400 -9.8179 -9.8245 -9.7730 -9.8753 -9.9106 -9.8636 -9.8348
-0.3244 -0.2989 -0.2954 -0.3289 -0.2946 -0.3206 -0.1601 -0.2520 -0.2764
0.7624 0.6780 0.5388 0.5772 0.1475 0.1578 -0.0356 -0.0819 0.4358
(:,:,13) =
-9.7437 -9.8760 -9.8512 -9.8426 -9.8205 -9.8716 -9.7673 -9.8175 -9.7851
-0.2627 -0.3319 -0.3031 -0.3106 -0.2872 -0.3335 -0.2253 -0.2506 -0.2929
0.6604 0.7042 0.5543 0.6148 0.1349 0.1468 -0.0105 -0.0619 0.4163
(:,:,14) =
-9.8183 -9.8148 -9.8522 -9.8507 -9.8779 -9.8780 -9.8105 -9.8185 -9.9186
-0.3567 -0.3391 -0.2660 -0.3160 -0.2716 -0.3400 -0.2176 -0.2733 -0.3084
0.6731 0.6819 0.5418 0.5497 0.1243 0.1377 -0.0253 -0.0877 0.3708
(:,:,15) =
-9.8210 -9.8280 -9.7950 -9.8374 -9.8236 -9.8543 -9.8413 -9.8564 -9.8511
-0.3185 -0.3218 -0.2863 -0.3451 -0.2929 -0.3180 -0.2526 -0.2891 -0.2867
0.7416 0.7219 0.5454 0.5438 0.1491 0.1463 -0.0171 -0.0615 0.3530
(:,:,16) =
-9.7702 -9.8036 -9.8025 -9.8287 -9.8787 -9.8241 -9.8976 -9.8712 -9.8689
-0.2553 -0.2993 -0.2928 -0.3098 -0.2996 -0.3237 -0.2285 -0.2526 -0.2880
0.7410 0.6932 0.5699 0.5713 0.1512 0.1522 -0.0439 -0.0840 0.3711
(:,:,17) =
-9.8122 -9.8339 -9.8401 -9.8246 -9.8647 -9.8723 -9.8656 -9.9150 -9.8752
-0.2491 -0.3338 -0.2538 -0.3167 -0.2816 -0.3536 -0.2305 -0.2943 -0.2477
0.7235 0.7166 0.5196 0.5602 0.1480 0.1465 -0.0513 -0.0491 0.3705
(:,:,18) =
-9.7961 -9.8055 -9.8568 -9.8403 -9.8629 -9.8947 -9.8190 -9.8889 -9.8107
-0.2785 -0.3339 -0.2591 -0.3552 -0.2879 -0.3279 -0.2435 -0.2802 -0.2046
0.8004 0.7347 0.5044 0.5421 0.1349 0.1467 -0.0090 -0.0849 0.4191
(:,:,19) =
-9.8736 -9.8163 -9.8196 -9.7820 -9.8525 -9.8796 -9.8646 -9.8894 -9.8062
-0.2809 -0.3314 -0.2378 -0.3204 -0.2733 -0.3473 -0.2346 -0.2588 -0.2858
0.8058 0.7424 0.5394 0.5743 0.1455 0.1498 -0.0406 -0.0951 0.4255
(:,:,20) =
-9.8573 -9.8078 -9.8441 -9.8334 -9.9045 -9.8444 -9.8661 -9.8566 -9.8409
-0.2525 -0.3306 -0.2741 -0.2888 -0.3146 -0.3191 -0.2429 -0.2535 -0.2523
0.7609 0.7459 0.5126 0.5551 0.1395 0.1565 -0.0591 -0.1031 0.4261
(:,:,21) =
-9.8071 -9.8394 -9.8093 -9.8146 -9.8927 -9.8402 -9.8533 -9.8183 -9.8459
-0.2915 -0.3386 -0.2825 -0.3119 -0.3252 -0.3245 -0.2393 -0.2300 -0.3123
0.7921 0.7543 0.4987 0.5890 0.1397 0.1466 -0.0328 -0.0738 0.4117
(:,:,22) =
-9.7563 -9.8255 -9.8290 -9.8939 -9.8882 -9.8522 -9.8989 -9.9003 -9.8233
-0.2271 -0.3160 -0.2632 -0.3257 -0.3198 -0.3122 -0.2563 -0.2295 -0.3217
0.7701 0.6867 0.5125 0.5603 0.1416 0.1465 -0.0516 -0.1143 0.3659
(:,:,23) =
-9.8219 -9.8019 -9.8137 -9.8514 -9.8521 -9.8446 -9.8559 -9.8182 -9.8075
-0.2682 -0.3097 -0.2724 -0.3005 -0.3160 -0.3292 -0.2157 -0.2402 -0.3516
0.7306 0.7428 0.5058 0.5672 0.1465 0.1388 -0.0418 -0.1146 0.4134
..... and goes to (:,:, 209)
I am trying to get the data to have 9 iterations (correspodnig to the 9 batches/trials) with the 3 rows coresponding to the 3 input channels and 541 coulms correspoding to the time steps, and then it shoulf only go to (:, :, 9). How would I go about chaging it into this format? Any help is greatly appreciated!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!