Difference in computational time
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jack
am 9 Jul. 2024
Kommentiert: Star Strider
am 12 Jul. 2024
Hi all, I am working on a curve fitting project and I have a couple of curves to fit. For 2 of the curves, the fitting function involves an integration and I was told that I will need to make each of the data loop through the function (using the for loop). The below is my first code, which takes less than a second to complete.
tic
% Preparation
clear; clc
load Steady_State_Data.mat
%% Preamble
% Fundamental constants
h = 4.0135667696*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
% Clean up of data to select range of values
Absorbance = log10(T_substrate./T_sample);
e = E >= 0 & E <= 2.0; % returns boolean value of the indices that satisfies the logical condition defined above
A = find(e); % gives indices that are non-zero
N = length(A); % no. of elements that are non-zero
n = length(E) + 1;
% Data for fitting
E_p = E(n-N:n-1);
Abs = Absorbance(n-N:n-1) - min(Absorbance);
% Fitting function: Elliott's Model for Steady State with non-parabolic factor
function F = EM_SS_wR(p, e_p)
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = p(1)*(2*pi*sqrt(p(4))/E_p)*(1/p(6))*...
(integral(@(E)sech(((E_p - E)./p(6)))*(1 + 10*p(5)*(E - p(3)) + ...
126*(p(5))^2*(E - p(3))^2)/(1 - exp(-2*pi*sqrt(p(4)/(E - p(3))))), p(3), Inf, 'ArrayValued', 1)) + ...
p(2)*((2*pi*p(4)^3/2)/E_p)*1/p(6)*(...
(1/1^3)*sech((E_p - p(3) + p(4)/1^2)./p(6)) + ...
(1/2^3)*sech((E_p - p(3) + p(4)/2^2)./p(6)) + ...
(1/3^3)*sech((E_p - p(3) + p(4)/3^2)./p(6)) + ...
(1/4^3)*sech((E_p - p(3) + p(4)/4^2)./p(6)) + ...
(1/5^3)*sech((E_p - p(3) + p(4)/5^2)./p(6)) + ...
(1/6^3)*sech((E_p - p(3) + p(4)/6^2)./p(6)) + ...
(1/7^3)*sech((E_p - p(3) + p(4)/7^2)./p(6)));
end
F = F(:);
end
% Carrier Contribution
function F = EM_SS_wR_CC(p, e_p)
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = p(1)*(2*pi*sqrt(p(4))/E_p)*(1/p(6))*...
(integral(@(E)sech(((E_p - E)./p(6)))*(1 + 10*p(5)*(E - p(3)) + ...
126*(p(5))^2*(E - p(3))^2)/(1 - exp(-2*pi*sqrt(p(4)/(E - p(3))))), p(3), Inf, 'ArrayValued', 1));
end
F = F(:);
end
% Excitoninc Contribution
EM_SS_wR_EC = @(p, E_p) p(2)*((2*pi*p(4)^3/2)/E_p)*1/p(6)*(...
(1/1^3)*sech((E_p - p(3) + p(4)/1^2)./p(6)) + ...
(1/2^3)*sech((E_p - p(3) + p(4)/2^2)./p(6)) + ...
(1/3^3)*sech((E_p - p(3) + p(4)/3^2)./p(6)) + ...
(1/4^3)*sech((E_p - p(3) + p(4)/4^2)./p(6)) + ...
(1/5^3)*sech((E_p - p(3) + p(4)/5^2)./p(6)) + ...
(1/6^3)*sech((E_p - p(3) + p(4)/6^2)./p(6)) + ...
(1/7^3)*sech((E_p - p(3) + p(4)/7^2)./p(6)));
%% Curve fitting options
% Initial parameter guess and bounds
lb = [-Inf, -Inf, 0, 0, -Inf, -Inf]; ub = [Inf, Inf, 55, 0.030, Inf, Inf];
p0 = [0.13, 0.11, 1.4, 0.025, 0.12, 0.035]; % refer to the next line for their order
% p0 = [A1, A2, Eg, Eb, R, g]
% lsqcurvefit and choose between different algorithm that lsqcurvefit employs (3C1, comment those lines that are not choosen and uncomment the line that is choosen, if not, matlab will take the last line of "optim_lsq" by default)
optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt', 'MaxFunctionEvaluations',1000, 'MaxIterations', 1000, 'FunctionTolerance',10^-9, 'StepTolerance', 10^-9);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'trust-region-reflective', 'MaxFunctionEvaluations',1000, 'MaxIterations', 'FunctionTolerance',10^-9, 'StepTolerance', 10^-9);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'interior-point', 'MaxFunctionEvaluations',1000, 'MaxIterations', 1000, 'FunctionTolerance',10^-9, 'StepTolerance', 10^-9);
% Solver for lsqcurvefit
[p, residualnorm, residual, exitflag, output, lambda, jacobian] = lsqcurvefit(@EM_SS_wR, p0, E_p, Abs, lb, ub);
%% Error bars calculation
ci = nlparci(p, residual, 'Jacobian', jacobian);
PCI = table(ci(:,1), p(:), ci(:,2),'VariableNames',{'CI 0.025','p','CI 0.975'});
Parameter_CI = table2array(PCI);
upper_bar = (Parameter_CI(:,3) - Parameter_CI(:,2))./2;
lower_bar = (Parameter_CI(:,2) - Parameter_CI(:,1))./2;
%% Parameter values (refer to command window)
p1 = p(1,1);
p2 = p(1,2);
p3 = p(1,3);
p4 = p(1,4);
p5 = p(1,5);
p6 = p(1,6);
e1 = lower_bar(1,1);
e2 = lower_bar(2,1);
e3 = lower_bar(3,1);
e4 = lower_bar(4,1);
e5 = lower_bar(5,1);
e6 = lower_bar(6,1);
X1 = [' A1 = ', num2str(p1), char(177), num2str(e1)];
X2 = [' A2 = ', num2str(p2), char(177), num2str(e2)];
X3 = [' Eg = ', num2str(p3), char(177), num2str(e3)];
X4 = [' Eb = ', num2str(p4), char(177), num2str(e4)];
X5 = [' R = ', num2str(p5), char(177), num2str(e5)];
X6 = [' g = ', num2str(p6), char(177), num2str(e6)];
disp(X1);
disp(X2);
disp(X3);
disp(X4);
disp(X5);
disp(X6);
% Table of parameter values
parameter_name = {'A1'; 'A2'; 'Eg'; 'Eb'; 'R'; 'g'};
parameter_values = [p1; p2; p3; p4; p5; p6];
error = [e1; e2; e3; e4; e5; e6];
T = table(parameter_values, error, 'RowNames',parameter_name);
disp(T)
%% Plot command
plot(E_p, Abs, 'o', 'Color','b') % scatter plot
hold on
plot(E_p, EM_SS_wR(p, E_p), 'LineWidth', 1.0, 'Color','red') % curve fitting
plot(E_p, EM_SS_wR_CC(p, E_p), 'LineWidth', 1.0,'Color','black') % carrier contribution
plot(E_p, EM_SS_wR_EC(p, E_p), 'LineWidth', 1.0, 'Color','green') % excitonic contribution
% Table of parameter values
TString = evalc('disp(T)');
TString = strrep(TString,'<strong>','\bf');
TString = strrep(TString,'</strong>','\rm');
TString = strrep(TString,'_','\_');
FixedWidth = get(0,'FixedWidthFontName');
annotation(gcf,'Textbox','String',TString,'Interpreter','tex',...
'FontName',FixedWidth,'Units','Normalized','Position',[0.15, 0.8, 0.1, 0.1]);
xlabel('Probe energy (eV)')
ylabel('Absorbance.O.D')
legend('Experimental Data', 'Fitted Curve', 'Carrier Contribution','Excitonic Contribution', 'Location','southeast')
hold off
%% Miscellaneous
% For a rectangular pic:
% drag horizontally until it just covers the letter 'c' in the word 'col'
% For a square pic:
% drag horizontall until it just covers the letter 'o' in the word 'Contribution' in the next line)
% legend('Experimental Data', 'Fitted Curve', 'Carrier Contribution','Excitonic Contribution')
toc
However, when using my second code (shown below) it takes around 5 minutes to complete running. May I please ask for the difference in the computational time?
tic
%% Preparation
clc; clear
data = importdata("FCPIB-293K-2.5mW-400nm-Jan072021 -ibg -bg -chirp.csv"); % insert file path within parenthesis
load Steady_State_Parameter_Values.mat
%% Preamble
% Fundamental constants
h = 4.1356677*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
kB = 8.617333268*10^-5; % units: eV/ K
% Data
Wavelength = data(:, 1);% units: nm
E = (h*c)./(Wavelength*10^-9);
delay_t = data(1, :);
% Parameter values from Steady state fiting
A1 = p(1,1);
A2 = p(1,2);
Eg = p(1,3);
Eb = p(1,4);
R = p(1,5);
g = p(1,6);
t1 = 0.5342;
t2 = 1.0257;
t3 = 1.9673;
t4 = 3.9554;
carrier_T = [1198.8, 816.7, 446.8, 328.7];
col1 = 56;
col2 = 63;
col3 = 74;
col4 = 87;
% Data for fitting
Range_E = E >= 1.5 & E <= 2.0;
Range_W = Wavelength >= (h*c)/(2.0*10^-9) & Wavelength <= (h*c)/(1.5*10^-9);
E_p = E(Range_E); % selected probe energies
data_new2 = data(Range_W, [col1,col2,col3,col4]);
delta_Abs1 = data(Range_W,col1);
delta_Abs2 = data(Range_W,col2);
delta_Abs3 = data(Range_W,col3);
delta_Abs4 = data(Range_W,col4);
% Fitting function: Elliott's Model for Transient Absorption
function F = EM_TA_wR1(x, e_p)
load Steady_State_Parameter_Values.mat
kB = 8.617333268*10^-5; % units: eV/ K
A1 = p(1,1);
A2 = p(1,2);
Eg = p(1,3);
Eb = p(1,4);
R = p(1,5);
g = p(1,6);
carrier_T = [1198.8, 816.7, 446.8, 328.7];
n = 1;
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = x(5)*A1*((2*pi*sqrt(x(2)))/E_p)*1/g*(integral(@(E)sech(((E_p - E)./g))*(1 + 10*R*(E - x(1)) + ...
126*(R)^2*(E - x(1))^2)/(1 - exp(-2*pi*sqrt(x(2)/(E - x(1))))), x(1), Inf, 'ArrayValued', 1))*(1 - 1/(1 + exp((E_p - x(4))/(kB*carrier_T(1, n)))))^2 - ...
A1*(2*pi*sqrt(Eb)/E_p)*(1/g)*...
(integral(@(e)sech(((E_p - e)./g))*(1 + 10*R*(e - Eg) + ...
126*(R)^2*(e - Eg)^2)/(1 - exp(-2*pi*sqrt(Eb/(e - Eg)))), Eg, Inf, 'ArrayValued', 1)) + ...
x(6)*A2*(4*pi*(x(2))^3/2)./(E_p).*1/x(3)*(...
(1/1^3)*sech((E_p - x(1) + x(2)/1^2)./x(3)) + ...
(1/2^3)*sech((E_p - x(1) + x(2)/2^2)./x(3)) + ...
(1/3^3)*sech((E_p - x(1) + x(2)/3^2)./x(3)) + ...
(1/4^3)*sech((E_p - x(1) + x(2)/4^2)./x(3)) + ...
(1/5^3)*sech((E_p - x(1) + x(2)/5^2)./x(3)) + ...
(1/6^3)*sech((E_p - x(1) + x(2)/6^2)./x(3)) + ...
(1/7^3)*sech((E_p - x(1) + x(2)/7^2)./x(3))) - ...
A2*(4*pi*Eb^3/2)./E_p.*1/g*(...
(1/1^3)*sech((E_p - Eg + Eb/1^2)./g) + ...
(1/2^3)*sech((E_p - Eg + Eb/2^2)./g) + ...
(1/3^3)*sech((E_p - Eg + Eb/3^2)./g) + ...
(1/4^3)*sech((E_p - Eg + Eb/4^2)./g) + ...
(1/5^3)*sech((E_p - Eg + Eb/5^2)./g) + ...
(1/6^3)*sech((E_p - Eg + Eb/6^2)./g) + ...
(1/7^3)*sech((E_p - Eg + Eb/7^2)./g));
end
F = F(:);
end
function F = EM_TA_wR2(x, e_p)
data = importdata("Experimental data\Transient Absorption\FCPIB-293K-2.5mW-400nm-Jan072021 -ibg -bg -chirp.csv"); % insert file path within parenthesis
load Steady_State_Parameter_Values.mat
h = 4.1356677*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
kB = 8.617333268*10^-5; % units: eV/ K
Wavelength = data(:, 1);% units: nm
E = (h*c)./(Wavelength*10^-9);
A1 = p(1,1);
A2 = p(1,2);
Eg = p(1,3);
Eb = p(1,4);
R = p(1,5);
g = p(1,6);
col1 = 56;
col2 = 63;
col3 = 74;
col4 = 87;
Range_E = E >= 1.5 & E <= 2.0;
Range_W = Wavelength >= (h*c)/(2.0*10^-9) & Wavelength <= (h*c)/(1.5*10^-9);
E_p = E(Range_E); % selected probe energies
data_new2 = data(Range_W, [col1,col2,col3,col4]);
carrier_T = [1198.8, 816.7, 446.8, 328.7];
n = 2;
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = x(5)*A1*((2*pi*sqrt(x(2)))/E_p)*1/g*(integral(@(E)sech(((E_p - E)./g))*(1 + 10*R*(E - x(1)) + ...
126*(R)^2*(E - x(1))^2)/(1 - exp(-2*pi*sqrt(x(2)/(E - x(1))))), x(1), Inf, 'ArrayValued', 1))*(1 - 1/(1 + exp((E_p - x(4))/(kB*carrier_T(1, n)))))^2 - ...
A1*(2*pi*sqrt(Eb)/E_p)*(1/g)*...
(integral(@(e)sech(((E_p - e)./g))*(1 + 10*R*(e - Eg) + ...
126*(R)^2*(e - Eg)^2)/(1 - exp(-2*pi*sqrt(Eb/(e - Eg)))), Eg, Inf, 'ArrayValued', 1)) + ...
x(6)*A2*(4*pi*(x(2))^3/2)*1/x(3)*(...
(1/1^3)*sech((E_p - x(1) + x(2)/1^2)./x(3)) + ...
(1/2^3)*sech((E_p - x(1) + x(2)/2^2)./x(3)) + ...
(1/3^3)*sech((E_p - x(1) + x(2)/3^2)./x(3)) + ...
(1/4^3)*sech((E_p - x(1) + x(2)/4^2)./x(3)) + ...
(1/5^3)*sech((E_p - x(1) + x(2)/5^2)./x(3)) + ...
(1/6^3)*sech((E_p - x(1) + x(2)/6^2)./x(3)) + ...
(1/7^3)*sech((E_p - x(1) + x(2)/7^2)./x(3))) - ...
A2*(4*pi*Eb^3/2)*1/g*(...
(1/1^3)*sech((E_p - Eg + Eb/1^2)./g) + ...
(1/2^3)*sech((E_p - Eg + Eb/2^2)./g) + ...
(1/3^3)*sech((E_p - Eg + Eb/3^2)./g) + ...
(1/4^3)*sech((E_p - Eg + Eb/4^2)./g) + ...
(1/5^3)*sech((E_p - Eg + Eb/5^2)./g) + ...
(1/6^3)*sech((E_p - Eg + Eb/6^2)./g) + ...
(1/7^3)*sech((E_p - Eg + Eb/7^2)./g));
end
F = F(:);
end
function F = EM_TA_wR3(x, e_p)
load Steady_State_Parameter_Values.mat
h = 4.1356677*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
kB = 8.617333268*10^-5; % units: eV/ K
Wavelength = data(:, 1);% units: nm
E = (h*c)./(Wavelength*10^-9);
A1 = p(1,1);
A2 = p(1,2);
Eg = p(1,3);
Eb = p(1,4);
R = p(1,5);
g = p(1,6);
col1 = 56;
col2 = 63;
col3 = 74;
col4 = 87;
Range_E = E >= 1.5 & E <= 2.0;
Range_W = Wavelength >= (h*c)/(2.0*10^-9) & Wavelength <= (h*c)/(1.5*10^-9);
E_p = E(Range_E); % selected probe energies
data_new2 = data(Range_W, [col1,col2,col3,col4]);
carrier_T = [1198.8, 816.7, 446.8, 328.7];
n = 3;
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = x(5)*A1*((2*pi*sqrt(x(2)))/E_p)*1/g*(integral(@(E)sech(((E_p - E)./g))*(1 + 10*R*(E - x(1)) + ...
126*(R)^2*(E - x(1))^2)/(1 - exp(-2*pi*sqrt(x(2)/(E - x(1))))), x(1), Inf, 'ArrayValued', 1))*(1 - 1/(1 + exp((E_p - x(4))/(kB*carrier_T(1, n)))))^2 - ...
A1*(2*pi*sqrt(Eb)/E_p)*(1/g)*...
(integral(@(e)sech(((E_p - e)./g))*(1 + 10*R*(e - Eg) + ...
126*(R)^2*(e - Eg)^2)/(1 - exp(-2*pi*sqrt(Eb/(e - Eg)))), Eg, Inf, 'ArrayValued', 1)) + ...
x(6)*A2*(4*pi*(x(2))^3/2)*1/x(3)*(...
(1/1^3)*sech((E_p - x(1) + x(2)/1^2)./x(3)) + ...
(1/2^3)*sech((E_p - x(1) + x(2)/2^2)./x(3)) + ...
(1/3^3)*sech((E_p - x(1) + x(2)/3^2)./x(3)) + ...
(1/4^3)*sech((E_p - x(1) + x(2)/4^2)./x(3)) + ...
(1/5^3)*sech((E_p - x(1) + x(2)/5^2)./x(3)) + ...
(1/6^3)*sech((E_p - x(1) + x(2)/6^2)./x(3)) + ...
(1/7^3)*sech((E_p - x(1) + x(2)/7^2)./x(3))) - ...
A2*(4*pi*Eb^3/2)*1/g*(...
(1/1^3)*sech((E_p - Eg + Eb/1^2)./g) + ...
(1/2^3)*sech((E_p - Eg + Eb/2^2)./g) + ...
(1/3^3)*sech((E_p - Eg + Eb/3^2)./g) + ...
(1/4^3)*sech((E_p - Eg + Eb/4^2)./g) + ...
(1/5^3)*sech((E_p - Eg + Eb/5^2)./g) + ...
(1/6^3)*sech((E_p - Eg + Eb/6^2)./g) + ...
(1/7^3)*sech((E_p - Eg + Eb/7^2)./g));
end
F = F(:);
end
function F = EM_TA_wR4(x, e_p)
load Steady_State_Parameter_Values.mat
h = 4.1356677*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
kB = 8.617333268*10^-5; % units: eV/ K
Wavelength = data(:, 1);% units: nm
E = (h*c)./(Wavelength*10^-9);
A1 = p(1,1);
A2 = p(1,2);
Eg = p(1,3);
Eb = p(1,4);
R = p(1,5);
g = p(1,6);
col1 = 56;
col2 = 63;
col3 = 74;
col4 = 87;
Range_E = E >= 1.5 & E <= 2.0;
Range_W = Wavelength >= (h*c)/(2.0*10^-9) & Wavelength <= (h*c)/(1.5*10^-9);
E_p = E(Range_E); % selected probe energies
data_new2 = data(Range_W, [col1,col2,col3,col4]);
carrier_T = [1198.8, 816.7, 446.8, 328.7];
n = 4;
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = x(5)*A1*((2*pi*sqrt(x(2)))/E_p)*1/g*(integral(@(E)sech(((E_p - E)./g))*(1 + 10*R*(E - x(1)) + ...
126*(R)^2*(E - x(1))^2)/(1 - exp(-2*pi*sqrt(x(2)/(E - x(1))))), x(1), Inf, 'ArrayValued', 1))*(1 - 1/(1 + exp((E_p - x(4))/(kB*carrier_T(1, n)))))^2 - ...
A1*(2*pi*sqrt(Eb)/E_p)*(1/g)*...
(integral(@(e)sech(((E_p - e)./g))*(1 + 10*R*(e - Eg) + ...
126*(R)^2*(e - Eg)^2)/(1 - exp(-2*pi*sqrt(Eb/(e - Eg)))), Eg, Inf, 'ArrayValued', 1)) + ...
x(6)*A2*(4*pi*(x(2))^3/2)*1/x(3)*(...
(1/1^3)*sech((E_p - x(1) + x(2)/1^2)./x(3)) + ...
(1/2^3)*sech((E_p - x(1) + x(2)/2^2)./x(3)) + ...
(1/3^3)*sech((E_p - x(1) + x(2)/3^2)./x(3)) + ...
(1/4^3)*sech((E_p - x(1) + x(2)/4^2)./x(3)) + ...
(1/5^3)*sech((E_p - x(1) + x(2)/5^2)./x(3)) + ...
(1/6^3)*sech((E_p - x(1) + x(2)/6^2)./x(3)) + ...
(1/7^3)*sech((E_p - x(1) + x(2)/7^2)./x(3))) - ...
A2*(4*pi*Eb^3/2)*1/g*(...
(1/1^3)*sech((E_p - Eg + Eb/1^2)./g) + ...
(1/2^3)*sech((E_p - Eg + Eb/2^2)./g) + ...
(1/3^3)*sech((E_p - Eg + Eb/3^2)./g) + ...
(1/4^3)*sech((E_p - Eg + Eb/4^2)./g) + ...
(1/5^3)*sech((E_p - Eg + Eb/5^2)./g) + ...
(1/6^3)*sech((E_p - Eg + Eb/6^2)./g) + ...
(1/7^3)*sech((E_p - Eg + Eb/7^2)./g));
end
F = F(:);
end
% Curve fitting
lb = [Eg, Eb, g, 0.3, 0.5, 0.2]; ub = [55, 0.05, 0.05, 20, 2, 1];
x0 = [1.65, 0.03, 0.03, 1.3, 1, 0.3];
optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt', 'MaxFunctionEvaluations',10^5, 'MaxIterations', 10^5, 'FunctionTolerance',10^-20, 'StepTolerance', 10^-20);
delta_Abs(:,1)= data_new2(:,1);
x1 = lsqcurvefit(@EM_TA_wR1, x0, E_p, delta_Abs1, lb, ub, optim_lsq);
x2 = lsqcurvefit(@EM_TA_wR2, x1, E_p, delta_Abs2, lb, ub, optim_lsq);
x3 = lsqcurvefit(@EM_TA_wR3, x2, E_p, delta_Abs3, lb, ub, optim_lsq);
x4 = lsqcurvefit(@EM_TA_wR4, x3, E_p, delta_Abs4, lb, ub, optim_lsq);
plot(E_p, delta_Abs1, 'o','color','blue')
hold on
plot(E_p, delta_Abs2, 'o', 'color', 'yellow')
plot(E_p, delta_Abs3, 'o', 'color', 'green')
plot(E_p, delta_Abs4, 'o', 'color', 'magenta')
plot(E_p, EM_TA_wR1(x1, E_p), 'color', 'blue', 'LineWidth', 4.0)
plot(E_p, EM_TA_wR2(x2, E_p), 'color', 'yellow', 'LineWidth', 4.0)
plot(E_p, EM_TA_wR3(x3, E_p), 'color', 'green', 'LineWidth', 4.0)
plot(E_p, EM_TA_wR4(x4, E_p), 'color', 'magenta', 'LineWidth', 4.0)
xlabel('Probe Photon Energy (eV)')
ylabel('\Delta A (O.D.)')
legend('0.5 ps', '1.0 ps', '2.0 ps', '4.0 ps', 'Location', 'southeast')
hold off
disp(x1)
disp(x2)
disp(x3)
disp(x4)
toc
1 Kommentar
Steven Lord
am 9 Jul. 2024
What happens when you profile the two codes? What sections of each code take the most time? Is it the equivalent section in the two codes or is the hotspot different between the two codes?
Are you confident that both the codes are solving the same problem? If so, double check. If I had a dollar for every time I've written "the same code" two different ways only to realize that they weren't actually doing the same thing ... I would have a non-zero number of dollars :)
Akzeptierte Antwort
Star Strider
am 9 Jul. 2024
It appears to work correctly.
What else needs to be done? (W.R.T. ‘Miscellaneous’, you can use the daspect funciton or different axis options.)
tic
% Preparation
clear; clc
load Steady_State_Data.mat
%% Preamble
% Fundamental constants
h = 4.0135667696*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
% Clean up of data to select range of values
Absorbance = log10(T_substrate./T_sample);
e = E >= 0 & E <= 2.0; % returns boolean value of the indices that satisfies the logical condition defined above
A = find(e); % gives indices that are non-zero
N = length(A); % no. of elements that are non-zero
n = length(E) + 1;
% Data for fitting
E_p = E(n-N:n-1);
Abs = Absorbance(n-N:n-1) - min(Absorbance);
% Fitting function: Elliott's Model for Steady State with non-parabolic factor
function F = EM_SS_wR(p, e_p)
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = p(1)*(2*pi*sqrt(p(4))/E_p)*(1/p(6))*...
(integral(@(E)sech(((E_p - E)./p(6)))*(1 + 10*p(5)*(E - p(3)) + ...
126*(p(5))^2*(E - p(3))^2)/(1 - exp(-2*pi*sqrt(p(4)/(E - p(3))))), p(3), Inf, 'ArrayValued', 1)) + ...
p(2)*((2*pi*p(4)^3/2)/E_p)*1/p(6)*(...
(1/1^3)*sech((E_p - p(3) + p(4)/1^2)./p(6)) + ...
(1/2^3)*sech((E_p - p(3) + p(4)/2^2)./p(6)) + ...
(1/3^3)*sech((E_p - p(3) + p(4)/3^2)./p(6)) + ...
(1/4^3)*sech((E_p - p(3) + p(4)/4^2)./p(6)) + ...
(1/5^3)*sech((E_p - p(3) + p(4)/5^2)./p(6)) + ...
(1/6^3)*sech((E_p - p(3) + p(4)/6^2)./p(6)) + ...
(1/7^3)*sech((E_p - p(3) + p(4)/7^2)./p(6)));
end
F = F(:);
end
% Carrier Contribution
function F = EM_SS_wR_CC(p, e_p)
for i = 1:numel(e_p)
E_p = e_p(i);
F(i) = p(1)*(2*pi*sqrt(p(4))/E_p)*(1/p(6))*...
(integral(@(E)sech(((E_p - E)./p(6)))*(1 + 10*p(5)*(E - p(3)) + ...
126*(p(5))^2*(E - p(3))^2)/(1 - exp(-2*pi*sqrt(p(4)/(E - p(3))))), p(3), Inf, 'ArrayValued', 1));
end
F = F(:);
end
% Excitoninc Contribution
EM_SS_wR_EC = @(p, E_p) p(2)*((2*pi*p(4)^3/2)/E_p)*1/p(6)*(...
(1/1^3)*sech((E_p - p(3) + p(4)/1^2)./p(6)) + ...
(1/2^3)*sech((E_p - p(3) + p(4)/2^2)./p(6)) + ...
(1/3^3)*sech((E_p - p(3) + p(4)/3^2)./p(6)) + ...
(1/4^3)*sech((E_p - p(3) + p(4)/4^2)./p(6)) + ...
(1/5^3)*sech((E_p - p(3) + p(4)/5^2)./p(6)) + ...
(1/6^3)*sech((E_p - p(3) + p(4)/6^2)./p(6)) + ...
(1/7^3)*sech((E_p - p(3) + p(4)/7^2)./p(6)));
%% Curve fitting options
% Initial parameter guess and bounds
lb = [-Inf, -Inf, 0, 0, -Inf, -Inf]; ub = [Inf, Inf, 55, 0.030, Inf, Inf];
p0 = [0.13, 0.11, 1.4, 0.025, 0.12, 0.035]; % refer to the next line for their order
% p0 = [A1, A2, Eg, Eb, R, g]
% lsqcurvefit and choose between different algorithm that lsqcurvefit employs (3C1, comment those lines that are not choosen and uncomment the line that is choosen, if not, matlab will take the last line of "optim_lsq" by default)
optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt', 'MaxFunctionEvaluations',1000, 'MaxIterations', 1000, 'FunctionTolerance',10^-9, 'StepTolerance', 10^-9);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'trust-region-reflective', 'MaxFunctionEvaluations',1000, 'MaxIterations', 'FunctionTolerance',10^-9, 'StepTolerance', 10^-9);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'interior-point', 'MaxFunctionEvaluations',1000, 'MaxIterations', 1000, 'FunctionTolerance',10^-9, 'StepTolerance', 10^-9);
% Solver for lsqcurvefit
[p, residualnorm, residual, exitflag, output, lambda, jacobian] = lsqcurvefit(@EM_SS_wR, p0, E_p, Abs, lb, ub);
%% Error bars calculation
ci = nlparci(p, residual, 'Jacobian', jacobian);
PCI = table(ci(:,1), p(:), ci(:,2),'VariableNames',{'CI 0.025','p','CI 0.975'});
Parameter_CI = table2array(PCI);
upper_bar = (Parameter_CI(:,3) - Parameter_CI(:,2))./2;
lower_bar = (Parameter_CI(:,2) - Parameter_CI(:,1))./2;
%% Parameter values (refer to command window)
p1 = p(1,1);
p2 = p(1,2);
p3 = p(1,3);
p4 = p(1,4);
p5 = p(1,5);
p6 = p(1,6);
e1 = lower_bar(1,1);
e2 = lower_bar(2,1);
e3 = lower_bar(3,1);
e4 = lower_bar(4,1);
e5 = lower_bar(5,1);
e6 = lower_bar(6,1);
X1 = [' A1 = ', num2str(p1), char(177), num2str(e1)];
X2 = [' A2 = ', num2str(p2), char(177), num2str(e2)];
X3 = [' Eg = ', num2str(p3), char(177), num2str(e3)];
X4 = [' Eb = ', num2str(p4), char(177), num2str(e4)];
X5 = [' R = ', num2str(p5), char(177), num2str(e5)];
X6 = [' g = ', num2str(p6), char(177), num2str(e6)];
disp(X1);
disp(X2);
disp(X3);
disp(X4);
disp(X5);
disp(X6);
% Table of parameter values
parameter_name = {'A1'; 'A2'; 'Eg'; 'Eb'; 'R'; 'g'};
parameter_values = [p1; p2; p3; p4; p5; p6];
error = [e1; e2; e3; e4; e5; e6];
T = table(parameter_values, error, 'RowNames',parameter_name);
disp(T)
%% Plot command
plot(E_p, Abs, 'o', 'Color','b') % scatter plot
hold on
plot(E_p, EM_SS_wR(p, E_p), 'LineWidth', 1.0, 'Color','red') % curve fitting
plot(E_p, EM_SS_wR_CC(p, E_p), 'LineWidth', 1.0,'Color','black') % carrier contribution
plot(E_p, EM_SS_wR_EC(p, E_p), 'LineWidth', 1.0, 'Color','green') % excitonic contribution
% Table of parameter values
TString = evalc('disp(T)');
TString = strrep(TString,'<strong>','\bf');
TString = strrep(TString,'</strong>','\rm');
TString = strrep(TString,'_','\_');
FixedWidth = get(0,'FixedWidthFontName');
annotation(gcf,'Textbox','String',TString,'Interpreter','tex',...
'FontName',FixedWidth,'Units','Normalized','Position',[0.15, 0.8, 0.1, 0.1]);
xlabel('Probe energy (eV)')
ylabel('Absorbance.O.D')
legend('Experimental Data', 'Fitted Curve', 'Carrier Contribution','Excitonic Contribution', 'Location','southeast')
hold off
%% Miscellaneous
% For a rectangular pic:
% drag horizontally until it just covers the letter 'c' in the word 'col'
% For a square pic:
% drag horizontall until it just covers the letter 'o' in the word 'Contribution' in the next line)
% legend('Experimental Data', 'Fitted Curve', 'Carrier Contribution','Excitonic Contribution')
toc
.
14 Kommentare
Star Strider
am 12 Jul. 2024
My (our) pleasure!
My apologies for the delay in responding. I had complete ISP failure from 19:00 Z 9 Jul 2024 to 02:00 Z 12 Jul 2024.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Function Creation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!