矩阵数据画彩色图以及二维拟合问题

11 Ansichten (letzte 30 Tage)
feng
feng am 4 Jul. 2024
Beantwortet: Suraj Kumar am 31 Jul. 2024
背景:我现在有从comsol中导出的电场图的数据,可以处理成三个矩阵,分别为x(横坐标,如1000*1的矩阵),y(纵坐标,如1000*1的矩阵),F(需要最终展示的数据,如1000*1的矩阵),其中x,y,F一一对应,也就是说,(x(1),y(1))对应的数据就是F(1)。另外x矩阵以及y矩阵内元素的顺序不是从小到大或者从大到小,而是乱序的,且不具备等差数列等规律
问题:(1)我想在matlab中画出这个矩阵对应的图,但是用我常用的imagesc、pcolor等方式没有用,并且实际矩阵是比较大的,大概1*17189,所以处理起来也比较麻烦,所以想问问各位有什么更好的办法可以处理这个问题
(2)图画好之后,需要对既有的数据做固定间隔的x以及y方向的插值拟合,想了一下,这种数据貌似传统的interp2也不是很好用,像请教下看有没有什么更好的办法
附件附上了具体的数据
附图截了一小部分的数据:第一列为x,第二列为y,第四列为F,第三列忽略掉就行

Antworten (1)

Suraj Kumar
Suraj Kumar am 31 Jul. 2024
Hi feng,
From what I gather, your goal is to visualize a large matrix and subsequently execute interpolation fitting at consistent intervals. To achieve the desired results, you can go through the following steps along with the code snippets:
1. The data consists of three matrices: `x`, `y`, and `F`. These scattered data points are interpolated onto a regular grid for visualization. Grid points are defined using `linspace` and a meshgrid is created with the function `meshgrid`.
xq = linspace(min(x), max(x), 500);
yq = linspace(min(y), max(y), 500);
[Xq, Yq] = meshgrid(xq, yq); % meshgrid for grid points
2. The `griddata` function interpolates the scattered data (`x`, `y`, `F`) onto the grid using the 'cubic' method. The data is then visualized with `imagesc`, including axis adjustments.
figure;
imagesc(xq, yq, Fq);
axis xy;
colorbar;
xlabel('X');
ylabel('Y');
title('Interpolated Data Plot');
3. To perform interpolation fitting, you can create an interpolant object from the scattered data using `scatteredInterpolant`. Then define grid points using `linspace` and create a meshgrid with `meshgrid`.
F_interpolant = scatteredInterpolant(x, y, F, 'linear', 'none');
% Define the grid for interpolation
xq = linspace(min(x), max(x), 500);
yq = linspace(min(y), max(y), 500);
[Xq, Yq] = meshgrid(xq, yq); %meshgrid for grid points
4. Then evaluate the interpolant at these grid points (`Xq`, `Yq`) and finally, visualize the interpolated data using `imagesc`, adjusting the axis with `axis xy.
Fq = F_interpolant(Xq, Yq); % Evaluate the interpolant at the grid points
figure;
imagesc(xq, yq, Fq);
axis xy;
colorbar;
xlabel('X');
ylabel('Y');
title('Interpolated Data Plot from Interpolant');
You may refer the attached output for better understanding:
Kindly refer to the documentation links as mentioned below:
Happy Coding!

Kategorien

Mehr zu Big Data Processing finden Sie in Help Center und File Exchange

Produkte


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!