Solving a constrained optimization problem

8 Ansichten (letzte 30 Tage)
Erick
Erick am 23 Apr. 2015
Kommentiert: Erick am 1 Mai 2015
I am trying to solve an optimization problem in matlab:
minimize( sum_{i,j}(f(M(i,j))) + err )
subject to: - norm(M) < err
- err > 0
- if j == i+1: M(i,j) > 1
- if j == i-1: M(i,j) < -1
- else: -1 <= M(i,j) <= 1
where: - f is a non convex function in general
- M is an n by n matrix
I looked at the constrained optimization toolbox but could not find how to solve this problem.
Can anyone point me which function I should use?

Akzeptierte Antwort

Alan Weiss
Alan Weiss am 24 Apr. 2015
If you look in the Optimization Decision Table you see that for a constrained nonlinear problem you should use fmincon. The constraint norm(M) < err is a nonlinear inequality constraint. The other constraints on M(i,j) are bound constraints.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
  3 Kommentare
Alan Weiss
Alan Weiss am 30 Apr. 2015
That sounds right, with the proviso that you make
A = [M(:);err];
I mean, make a column vector, using a semicolon before err.
Alan Weiss
MATLAB mathematical toolbox documentation
Erick
Erick am 1 Mai 2015
That works. Thank you for your help!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by