Change Input Force to Input Displacement ODE Solver

1 Ansicht (letzte 30 Tage)
Jonathan Frutschy
Jonathan Frutschy am 24 Jun. 2024
Bearbeitet: Aquatris am 25 Jun. 2024
I have the following ODE solution:
N = 100;
m = 0.1*ones(N,1);
c = 0.1;
b = 0.1;
k = 4;
gamma = 0.1;
X0 = zeros(2*N, 1);
dt = 0.91; % [s]
scale = 0.0049/2;
epsilon = 0.5; % [m]
escale = 10^-2;
rd = 1;
f = @(t,rd) rd.*scale.*square(t) + epsilon.*escale; % [N]
fun = @(t, X) odefun(t, rd, X, N, marray(m), make_diagonal(X,c,b,N),...
make_diagonal(X, k, gamma, N),f);
tspan_train = [0:dt:100];
[t, X] = ode45(fun, tspan_train, X0);
function dX = odefun(t, rd, X, N, M, C, K, f)
%% Definitions
x = X(1:N); % position state vector
dx = X(N+1:2*N); % velocity state vector
%% Force vector
f_reservoir = f(t,rd);
F = [f_reservoir; zeros(98,1); f_reservoir];
%% Equations of Motion
ddx = M\(F - K*x - C*dx);
%% State-space model
dX = [dx; ...
ddx];
end
function out = make_diagonal(x, k, gamma, N)
x = x(:);
x = [x(1:N); 0];
ck = circshift(k, -1);
cg = circshift(gamma, -1);
cx = circshift(x, -1);
ccx = circshift(x, 1);
d1 = -3 .* ck .* cg .* cx .^ 2 - ck;
d2 = (k .* gamma + ck .* cg) .* x .^ 2 + k + ck;
d3 = -3 .* k .* ccx .^ 2 - k;
out = full(spdiags([d1 d2 d3], -1:1, N, N));
end
function M = marray(m)
M = diag(m);
end
I would like to change my input force f in Newtons to an input displacement in meters. How do I do this?
  8 Kommentare
Jonathan Frutschy
Jonathan Frutschy am 25 Jun. 2024
Bearbeitet: Jonathan Frutschy am 25 Jun. 2024
@Aquatris Or would you do this?
displacement_input = @(t,rd) rd.*scale.*sin(t) + epsilon.*escale; % [m]
function dX = odefun(t, rd, X, N, M, C, K,displacement_input)
%% Definitions
x = X(1:N); % position state vector
x(1) = x(1)+displacement_input(t,rd);
x(end) = x(end)+displacement_input(t,rd);
dx = X(N+1:2*N); % velocity state vector
%% Force vector
f_reservoir_1 = x(1);
f_reservoir_end = x(end);
F = [f_reservoir_1; zeros(98,1); f_reservoir_end];
%% Equations of Motion
ddx = M\(F - K*x - C*dx);
%% State-space model
dX = [dx; ...
ddx];
end
Aquatris
Aquatris am 25 Jun. 2024
Bearbeitet: Aquatris am 25 Jun. 2024
You can but with only this change, you will not see the displacement inputs in your X. I am not sure how you can incorporate it with ode45 solver. You might want to implement the solver your solves which is a trival for loop to mitigate the issue.
The demonstration of the issue due to using ode45:
  • Time 0: x0
  • Time 1: x1 = x0 + dX*dt;
  • Time 2: x1_new = x1 + dispInput; -> you apply the displacement input
  • Time 2: x2 = x1 + dX*dt -> in here dX is calculated with the x1_new but ode45 uses x1, not x1_new in the addition, so your x2 is actually not right

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Produkte


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by