Fitting multiple curves with multiple data sets, partial and globally shared parameters using lsqcurvefit

26 Ansichten (letzte 30 Tage)
Hello everyone, I hope you can help me with the following problem. I have 3 measurement data sets, consisting of x-values (e.g. x1) and 2 corresponding y-data sets (e.g. A1 and B1). The functions of these parameters have partially shared parameters. A simultaneous fit over both curves works so far. Now I want to run a global fit over all 3 measurement datasets simultaneously, where all 3 measurement datasets share one parameter (beta(10)). How do I do this? Previously, I received a value for beta (10) for each fit, but now I want to change this. My data and functions (non-linear) are very extensive, so I have created a simplified example.
b1 = 1; b2 = 0.85; b3 = 2.5;
b4 = 1.1; b5 = 2.2; b6 = 4.5;
b7 = 1.3; b8 = 7.2; b9 = 9.5;
b10 = 0.5;
%x data
x1 = linspace(0, 10, 20).'; x2 = linspace(0, 10, 23).'; x3 = linspace(0, 10, 14).';
%constants
C1 = 3.7 ; C2 = 4.2; C3 = 20.2;
%measurement dataset 1
A1 = b1 + b2*x1 + C1 * b10 + rand(20,1);
B1 = b3 - b2*x1 + C1 * b10 + rand(20,1);
%measurement dataset 2
A2 = b4 + b5*x2 + C2 * b10 + rand(23,1);
B2 = b6 - b5*x2 + C2 * b10 + rand(23,1);
%measurement dataset 3
A3 = b7 + b8*x3 + C3 * b10 + rand(14,1);
B3 = b9 - b8*x3 + C3 * b10 + rand(14,1);
mdl1 = @(beta, x) [beta(1) + beta(2).*x + C1 .* beta(10) ,...
beta(3) - beta(2).*x + C1 .* beta(10)];
mdl2 = @(beta, x) [beta(4) + beta(5).*x + C2 .* beta(10) ,...
beta(6) - beta(5).*x + C2 .* beta(10)];
mdl3 = @(beta, x) [beta(7) + beta(8).*x + C3 .* beta(10) ,...
beta(9) - beta(8).*x + C3 .* beta(10)];
beta0 = [0.92, 0.8, 2, 0.7, 2, 4, 1, 7, 9, 1];
lb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
ub = [15, 15, 15, 15, 15, 15, 15, 15, 15, 15];
options = optimoptions(@lsqcurvefit,'Algorithm','levenberg-marquardt');
beta1 = lsqcurvefit(mdl1,beta0,x1,[A1, B1],lb,ub,options);
beta2 = lsqcurvefit(mdl2,beta0,x2,[A2, B2],lb,ub,options);
beta3 = lsqcurvefit(mdl3,beta0,x3,[A3, B3],lb,ub,options);
A1_fit = beta1(1) + beta1(2)*x1 + C1 * beta1(10);
B1_fit = beta1(3) - beta1(2)*x1 + C1 * beta1(10);
A2_fit = beta2(4) + beta2(5)*x2 + C2 * beta2(10);
B2_fit = beta2(6) - beta2(5)*x2 + C2 * beta2(10);
A3_fit = beta3(7) + beta3(8)*x3 + C3 * beta3(10);
B3_fit = beta3(9) - beta3(8)*x3 + C3 * beta3(10);
figure(1);
subplot(2,1,1);
hold on;
plot(x1, A1,'s');
plot(x1, A1_fit);
plot(x2, A2,'d');
plot(x2, A2_fit);
plot(x3, A3,'p');
plot(x3, A3_fit);
subplot(2,1,2);
hold on;
plot(x1, B1,'s');
plot(x1, B1_fit);
plot(x2, B2,'d');
plot(x2, B2_fit);
plot(x3, B3,'p');
plot(x3, B3_fit);
hold off

Akzeptierte Antwort

Torsten
Torsten am 16 Jun. 2024
Bearbeitet: Torsten am 16 Jun. 2024
rng("default")
b1 = 1; b2 = 0.85; b3 = 2.5;
b4 = 1.1; b5 = 2.2; b6 = 4.5;
b7 = 1.3; b8 = 7.2; b9 = 9.5;
b10 = 0.5;
%x data
x1 = linspace(0, 10, 20).'; x2 = linspace(0, 10, 23).'; x3 = linspace(0, 10, 14).';
%constants
C1 = 3.7 ; C2 = 4.2; C3 = 20.2;
%measurement dataset 1
A1 = b1 + b2*x1 + C1 * b10 + rand(20,1);
B1 = b3 - b2*x1 + C1 * b10 + rand(20,1);
%measurement dataset 2
A2 = b4 + b5*x2 + C2 * b10 + rand(23,1);
B2 = b6 - b5*x2 + C2 * b10 + rand(23,1);
%measurement dataset 3
A3 = b7 + b8*x3 + C3 * b10 + rand(14,1);
B3 = b9 - b8*x3 + C3 * b10 + rand(14,1);
beta0 = [0.92, 0.8, 2, 0.7, 2, 4, 1, 7, 9, 1];
lb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
ub = [15, 15, 15, 15, 15, 15, 15, 15, 15, 15];
fun = @(beta,x)[beta(1) + beta(2).*x1 + C1* beta(10) ;
beta(3) - beta(2).*x1 + C1* beta(10) ;
beta(4) + beta(5).*x2 + C2* beta(10) ;
beta(6) - beta(5).*x2 + C2* beta(10) ;
beta(7) + beta(8).*x3 + C3* beta(10) ;
beta(9) - beta(8).*x3 + C3* beta(10) ];
beta = lsqcurvefit(fun,beta0,[x1;x1;x2;x2;x3;x3],[A1;B1;A2;B2;A3;B3],lb,ub)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
beta = 1x10
1.2801 0.8703 2.8336 1.3172 2.1985 4.7244 0.4327 7.1798 8.4477 0.5704
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
A1_fit = beta(1) + beta(2)*x1 + C1 * beta(10);
B1_fit = beta(3) - beta(2)*x1 + C1 * beta(10);
A2_fit = beta(4) + beta(5)*x2 + C2 * beta(10);
B2_fit = beta(6) - beta(5)*x2 + C2 * beta(10);
A3_fit = beta(7) + beta(8)*x3 + C3 * beta(10);
B3_fit = beta(9) - beta(8)*x3 + C3 * beta(10);
figure(1);
subplot(2,1,1);
hold on;
plot(x1, A1,'s');
plot(x1, A1_fit);
plot(x2, A2,'d');
plot(x2, A2_fit);
plot(x3, A3,'p');
plot(x3, A3_fit);
subplot(2,1,2);
hold on;
plot(x1, B1,'s');
plot(x1, B1_fit);
plot(x2, B2,'d');
plot(x2, B2_fit);
plot(x3, B3,'p');
plot(x3, B3_fit);
hold off

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Produkte


Version

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by