How to solve non_linear equation

2 Ansichten (letzte 30 Tage)
Fatima Majeed
Fatima Majeed am 12 Jun. 2024
Kommentiert: Sam Chak am 13 Jun. 2024
I want to solve this eqution

Akzeptierte Antwort

Star Strider
Star Strider am 12 Jun. 2024
Solve it symbolically —
syms z
Eqn = z^3 == log(z)*(482036/0.18525)^5
Eqn = 
Z = solve(Eqn)
Z = 
Z = vpa(Z)
Z = 
format longG
Zd = double(Z)
Zd =
-76151096277.1022 + 123912303259.595i 145274860824.135 + 0i 1 + 0i -76151096277.1022 - 123912303259.595i
.
  4 Kommentare
Sam Chak
Sam Chak am 13 Jun. 2024
Bearbeitet: Sam Chak am 13 Jun. 2024
@Star Strider, @Torsten, Wolfram Alpha also returned the perfect "1" as one of the solutions. But we all know that . Maybe that's merely an approximation because ?
syms z
f = (z^3)/(482036/0.18525)^5;
limit(f, z, 1)
ans = 
double(ans)
ans = 8.3829e-33
Plot:
z = linspace(0.9, 1.1, 20001);
y1 = z.^3;
y2 = log(z)*(482036/0.18525)^5;
plot(z, [y1; y2]), grid on, ylim([0 2])
Sam Chak
Sam Chak am 13 Jun. 2024
I guess both MATLAB and Wolfram Alpha analytically computed the solution:
c = (4820360/0.018525)^7; % constant
sol = exp(-lambertw(-3/c)/3)
sol = 1
However, I mathematically believe that this is just an approximation with the real solution very close to being 1.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by