Function to trainNetwork returns an unexpected error

1 Ansicht (letzte 30 Tage)
Ernest Modise - Kgamane
Ernest Modise - Kgamane am 7 Jun. 2024
Kommentiert: Matt J am 9 Jun. 2024
My code returns the following error for this function call - What is the fix for this?
net = trainNetwork(X_train, categorical(y_train), layers, options);
Error using trainNetwork (line 191)
Too many input arguments.
Error in LSTMGomz (line 63)
net = trainNetwork(X_train, categorical(y_train), layers, options);
Caused by:
Error using nnet.internal.cnn.trainNetwork.DLTInputParser>iParseInputArguments (line 75)
Too many input arguments.
  2 Kommentare
Matt J
Matt J am 7 Jun. 2024
You would have to attach a .mat file providing inputs X_train, categorical(y_train), layers, options for us to run with.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Matt J
Matt J am 8 Jun. 2024
Bearbeitet: Matt J am 8 Jun. 2024
Your X_train and y_train data were in some weird format that trainNetwork cannot recognize. Try this instead,
Xdata = num2cell(readmatrix('LSTMdataIn.xlsx')',1)';
N=200;
train_ratio=0.8;
split_index=round(train_ratio*N);
inputSize = height(Xdata{1}); % Number of features in the input data
numClasses = height(Xdata)/N; % Number of categories
Xdata=reshape(Xdata,N,numClasses);
ydata=repmat(1:numClasses,N,1);
X_train=Xdata(1:split_index,:);
y_train=ydata(1:split_index,:);
X_test=Xdata(split_index+1:end,:);
y_test=ydata(1:split_index+1:end,:);
layers = [
sequenceInputLayer(inputSize)
lstmLayer(100, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
options = trainingOptions('adam', 'MaxEpochs', 100);
net = trainNetwork(X_train(:), categorical(y_train(:)), layers, options);
Training on single CPU. |========================================================================================| | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning | | | | (hh:mm:ss) | Accuracy | Loss | Rate | |========================================================================================| | 1 | 1 | 00:00:00 | 20.31% | 1.6082 | 0.0010 | | 9 | 50 | 00:00:00 | 79.69% | 0.4997 | 0.0010 | | 17 | 100 | 00:00:00 | 82.81% | 0.2851 | 0.0010 | | 25 | 150 | 00:00:01 | 76.56% | 0.3004 | 0.0010 | | 34 | 200 | 00:00:01 | 79.69% | 0.2844 | 0.0010 | | 42 | 250 | 00:00:01 | 82.81% | 0.2591 | 0.0010 | | 50 | 300 | 00:00:01 | 76.56% | 0.2918 | 0.0010 | | 59 | 350 | 00:00:02 | 79.69% | 0.2794 | 0.0010 | | 67 | 400 | 00:00:02 | 82.81% | 0.2565 | 0.0010 | | 75 | 450 | 00:00:02 | 76.56% | 0.2902 | 0.0010 | | 84 | 500 | 00:00:03 | 79.69% | 0.2782 | 0.0010 | | 92 | 550 | 00:00:03 | 82.81% | 0.2557 | 0.0010 | | 100 | 600 | 00:00:03 | 76.56% | 0.2895 | 0.0010 | |========================================================================================| Training finished: Max epochs completed.
  3 Kommentare
Ernest Modise - Kgamane
Ernest Modise - Kgamane am 9 Jun. 2024
Hi Mat, You have created an interesting data structure for this purpose. I would like to spend time on learning how to configure the data structure. Please send me tops to look at.
Matt J
Matt J am 9 Jun. 2024
It's just a cell array of numeric data. You had tables nested inside cells, I think.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by