KdV ODE third-order

13 Ansichten (letzte 30 Tage)
Sergey Nikolaev
Sergey Nikolaev am 1 Jun. 2024
It is necessary to find a solution that satisfies the boundary conditions:
u′′′+u′+λu=f.
initial conditions:
u′′(0)=u′(0)+u(0),
u′′(1)=u(1),
u′(1)=u(1),
How to define u and fin matlab?
where λ>0, ;, , and - given numbers.
where C is a positive constant independent of 𝑢 and f
clear;
syms y(x) y0 lambda u
Dy = diff(y);
D2y = diff(y,2);
D2y_2 = diff(y,2);
D3y = diff(y,3);
ode = D3y + lambda*u == y(x);
ySol(x) = dsolve(ode);

Antworten (1)

Torsten
Torsten am 1 Jun. 2024
Verschoben: Torsten am 1 Jun. 2024
If you don't get a solution with the symbolic approach, you will have to specify the parameters and the function f and try "bvp4c" to solve.
syms u(x)
%syms f(x)
syms a0 a1 b0 c0 real
%syms lambda
lambda = 1;
f = cos(x);
Du = diff(u);
D2u = diff(u,2);
D3u = diff(u,3);
eqn = D3u+Du+lambda*u==f;
conds = [D2u(0)==a1*Du(0)+a0*u(0),D2u(1)==b0*u(1),Du(1)==c0*u(1)];
solu = dsolve(eqn,conds)
  1 Kommentar
Athanasios Paraskevopoulos
As @Torsten said above ,a way to solve this boundary value problem in MATLAB is to use numerical methods such as the bvp4c function. This function is designed for solving boundary value problems for ordinary differential equations numerically. Here is a sample of code
% Define the differential equation system
function dydx = odefun(x, y, lambda)
dydx = [y(2);
y(3);
-y(2) - lambda*y(1) + cos(x)];
end
% Define the boundary conditions
function res = bcfun(ya, yb, a0, a1, b0, c0)
res = [ya(3) - a1*ya(2) - a0*ya(1); % D2u(0) = a1*Du(0) + a0*u(0)
yb(3) - b0*yb(1); % D2u(1) = b0*u(1)
yb(2) - c0*yb(1)]; % Du(1) = c0*u(1)
end
% Initial guess for the solution
function yinit = guess(x)
yinit = [0; 0; 0]; % Initial guess
end
% Main script
lambda = 1;
a0 = 1; a1 = 1; b0 = 1; c0 = 1; % Example values, adjust as needed
% Solve the BVP
solinit = bvpinit(linspace(0, 1, 10), @guess);
sol = bvp4c(@(x, y) odefun(x, y, lambda), @(ya, yb) bcfun(ya, yb, a0, a1, b0, c0), solinit);
% Extract and plot the solution
x = linspace(0, 1, 100);
y = deval(sol, x);
figure;
plot(x, y(1, :));
xlabel('x');
ylabel('u(x)');
title('Solution of the differential equation');
grid on;

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by