Extract area from elipsoidal/cirle trajectory.

1 Ansicht (letzte 30 Tage)
Claudio Iturra
Claudio Iturra am 28 Mai 2024
Bearbeitet: Matt J am 28 Mai 2024
Dear all, how are you?
I created the following code to simulate an anticlockwise rotating trajectory forced by an external velocity. Now, I want to calculate the area each time the trajectory makes a closed circle, as described in the attached image. I would appreciate any help in finding the best way to identify the areas inside the circles for each loop/circle in the trajectory.
For circle detection, I used the polyshape function as described in the attached figure. Unfortunately, this requires me to cut the series each time a circular trajectory is identified, and then manually choose the area I need, which takes too much time
Thanks for your time!
clear all,close all;
Fs = 1/0.5;
duration_hours = 25 * 24;
t = 0:1/Fs:duration_hours;
period = 20;
phase = -pi/2;
num_periods = floor(duration_hours / period);
amplitudes = 0.1/2 + 0.1 * rand(1, num_periods); % Random amplitudes between 0.1 and 0.3
y = zeros(size(t));
for i = 1:num_periods
start_idx = (i-1) * period * Fs + 1;
end_idx = i * period * Fs;
uI(start_idx:end_idx) = amplitudes(i) * sin(2*pi*(t(start_idx:end_idx) - t(start_idx))/period);
end
amplitudes = 0.1/2 + 0.1 * rand(1, num_periods); % Random amplitudes between 0.1 and 0.3
for i = 1:num_periods
start_idx = (i-1) * period * Fs + 1;
end_idx = i * period * Fs;
vI(start_idx:end_idx) = amplitudes(i) * sin(2*pi*(t(start_idx:end_idx) - t(start_idx))/period);
end
uI = uI(10:end);
vI = vI(1:length(uI));
cv = complex(uI*100,vI*100);
dt=0.5/24;
dt=dt*3600*24;
cxI=cumsum(cv)*dt;
cxI=cxI/100/1000;
x = real(cxI + complex(cumsum(repmat(0.1,1191,1)),0)' );
y = imag(cxI + complex(cumsum(repmat(0.1,1191,1)),0)' );
clearvars -except x y;
plot(x,y),axis equal;
% for the first circle detected
pgonAll = polyshape(x(1:48),y(1:48),'Simplify',false);
pgonAll = simplify(pgonAll);
pgonEach = regions(pgonAll);
figure
plot(x(1:48),y(1:48))
hold on
plot(pgonEach(3))

Akzeptierte Antwort

Matt J
Matt J am 28 Mai 2024
Bearbeitet: Matt J am 28 Mai 2024
load data
ymin=min(y);
[xx,yy]=deal(x,y);
xx(end+1)=x(end); yy(end+1)=ymin;
p=regions(polyshape(xx,yy));
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
h=arrayfun(@(P)min(P.Vertices(:,2)), p );
p=p(h>0.001+ymin);
Areas=area(p)'
Areas = 1x29
1.8247 0.9686 0.0081 1.0051 0.5726 0.0032 0.1837 0.5910 2.8787 1.0814 0.0241 1.7894 2.5199 0.7346 1.0110 0.0168 0.3967 2.1162 1.7427 2.5049 0.7968 1.8758 1.2651 0.6767 1.3316 1.8829 0.2996 1.1132 0.0252
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
plot(x,y); hold on
plot(p,'FaceColor','r'); hold off
axis([50,100,-5,5]); daspect([1,1,1])

Weitere Antworten (0)

Kategorien

Mehr zu Time Series Events finden Sie in Help Center und File Exchange

Produkte


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by