Training a Convolutional Autoencoder

11 Ansichten (letzte 30 Tage)
Aghata
Aghata am 23 Mai 2024
Beantwortet: ali kaffashbashi am 17 Okt. 2024
I'm trying to train this simple convolutional autoencoder but I'm getting error on the training part. The error says the size of predictions and tragets are not the same. But When I check the network structure using the analyseNetwork function it seems that my input has the same size as my output. I can't find where is the error. Can someone help me?
Follows the code
datastore_MP = datastore("Tiles_MP1_100ov50\", "IncludeSubfolders",true, "LabelSource","foldernames");
images_MP = cell(numel(datastore_MP.Files), 1);
for i = 1:numel(datastore_MP.Files)
img_MP = readimage(datastore_MP, i);
[rows, cols] = size(img_MP);
images_MP{i} = img_MP;
end
encoderBlock = @(block) [
convolution2dLayer(3,2^(3+block), "Padding",'same')
reluLayer
maxPooling2dLayer(2,"Stride",2)
convolution2dLayer(3,2^(5+block), "Padding",'same')
reluLayer
maxPooling2dLayer(2,"Stride",2)];
net_E = blockedNetwork(encoderBlock,1,"NamePrefix","encoder_");
decoderBlock = @(block) [
transposedConv2dLayer(3,2^(5-block),"Stride",2)
reluLayer
transposedConv2dLayer(3,2^(1-block), "Stride",2)
reluLayer];
net_D = blockedNetwork(decoderBlock,1,"NamePrefix","decoder_");
inputSize = [100 100 1];
CAE = encoderDecoderNetwork(inputSize,net_E,net_D);
analyzeNetwork(CAE)
options = trainingOptions( "adam",...
"Plots","training-progress",...
"MaxEpochs", 100,...
"L2Regularization",0.001);
trainedCAE = trainnet(datastore_MP, CAE, "mse", options);

Antworten (2)

newhere
newhere am 23 Mai 2024
Hey, try changing 'trainnet' to 'trainNetwork'.
trainedCAE = trainNetwork(datastore_MP, CAE, "mse", options);
  1 Kommentar
Aghata
Aghata am 27 Mai 2024
Hello, Fatma.
I tried but this doesn't fix the problem. I've been trying to find a way to set the target size to be the same as the input or output, but without success.

Melden Sie sich an, um zu kommentieren.


ali kaffashbashi
ali kaffashbashi am 17 Okt. 2024
I guess it tries to set your label sources (the folder names) as targets during the training. Hence, the input and output sizes become different. I reckon using the following code instead of your training line will solve your problem:
trainedCAE = trainnet(combine(datastore_MP,datastore_MP), CAE, "mse", options);

Kategorien

Mehr zu Simulink Functions finden Sie in Help Center und File Exchange

Produkte


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by