Training a Convolutional Autoencoder
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I'm trying to train this simple convolutional autoencoder but I'm getting error on the training part. The error says the size of predictions and tragets are not the same. But When I check the network structure using the analyseNetwork function it seems that my input has the same size as my output. I can't find where is the error. Can someone help me?
Follows the code
datastore_MP = datastore("Tiles_MP1_100ov50\", "IncludeSubfolders",true, "LabelSource","foldernames");
images_MP = cell(numel(datastore_MP.Files), 1);
for i = 1:numel(datastore_MP.Files)
img_MP = readimage(datastore_MP, i);
[rows, cols] = size(img_MP);
images_MP{i} = img_MP;
end
encoderBlock = @(block) [
convolution2dLayer(3,2^(3+block), "Padding",'same')
reluLayer
maxPooling2dLayer(2,"Stride",2)
convolution2dLayer(3,2^(5+block), "Padding",'same')
reluLayer
maxPooling2dLayer(2,"Stride",2)];
net_E = blockedNetwork(encoderBlock,1,"NamePrefix","encoder_");
decoderBlock = @(block) [
transposedConv2dLayer(3,2^(5-block),"Stride",2)
reluLayer
transposedConv2dLayer(3,2^(1-block), "Stride",2)
reluLayer];
net_D = blockedNetwork(decoderBlock,1,"NamePrefix","decoder_");
inputSize = [100 100 1];
CAE = encoderDecoderNetwork(inputSize,net_E,net_D);
analyzeNetwork(CAE)
options = trainingOptions( "adam",...
"Plots","training-progress",...
"MaxEpochs", 100,...
"L2Regularization",0.001);
trainedCAE = trainnet(datastore_MP, CAE, "mse", options);
0 Kommentare
Antworten (2)
newhere
am 23 Mai 2024
Hey, try changing 'trainnet' to 'trainNetwork'.
trainedCAE = trainNetwork(datastore_MP, CAE, "mse", options);
ali kaffashbashi
am 17 Okt. 2024
I guess it tries to set your label sources (the folder names) as targets during the training. Hence, the input and output sizes become different. I reckon using the following code instead of your training line will solve your problem:
trainedCAE = trainnet(combine(datastore_MP,datastore_MP), CAE, "mse", options);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Simulink Functions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!