A quatity is being solved by a self consistent integration
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How to find Z from the below equation
here \mathcal{P} means the principal value integration. I was tried in the following way, but couldn't figure out how to solve this,
A = 2000; a = 500; tolerance = 10^-4; Z = 0;
for i = 1 : 10
result = integral(@(x) (x.^2.*((A^2+Z^2)./(A^2+((x.^2+a^2)))) .* (sqrt(x.^2+a^2).*(x.^2+a^2-Z^2)).^(-1)), 0,A, 'PrincipalValue', true);
new_Z = sqrt(result);
if abs(new_Z - Z) < tolerance
Z = new_Z;
break;
end
Z = new_Z;
end
disp(new_Z);
Thank you in advance!
2 Kommentare
Akzeptierte Antwort
Torsten
am 9 Mai 2024
Bearbeitet: Torsten
am 9 Mai 2024
format long
syms x
A = 2000;
a = 500;
b = 1000;
Z = 0;
for i=1:20
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
I = double(int(f,x,0,A,'PrincipalValue',true));
Zpi = sqrt(b^2-I)
Z = real(Zpi)
end
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
double(Z^2 - b^2 + real(int(f,x,0,A,'PrincipalValue',true)))
2 Kommentare
Torsten
am 12 Mai 2024
Bearbeitet: Torsten
am 12 Mai 2024
If the values for A don't change much, you should use the result for Z of the call for A(i) as initial guess for the call with A(i+1).
Further, you could try to solve your equation directly without fixed-point iteration using the "vpasolve" function:
syms Z x
A = 2000;
a = 500;
b = 1000;
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
eqn = Z^2 - b^2 + real(int(f,x,0,A,'PrincipalValue',true)) == 0;
vpasolve(eqn,Z)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!