Filter löschen
Filter löschen

Plotting discrete Klein - Gordon equation (DKG) with friction in DNA

4 Ansichten (letzte 30 Tage)
I am exploring the dynamics of the discrete Klein - Gordon equation (DKG) with friction is given by the equation :
In the above equation, W describes the potential function :
The objective of this simulation is to model the dynamics of a segment of DNA under thermal fluctuations with fixed boundaries using a modified discrete Klein-Gordon equation. The model incorporates elasticity, nonlinearity, and damping to provide insights into the mechanical behavior of DNA under various conditions.
My question to the following code is: Why are the horizontal lines in the first and the last plot? I can not undesrastant that
% Parameters
numBases = 200; % Number of base pairs, representing a segment of DNA
kappa = 0.1; % Elasticity constant
omegaD = 0.2; % Frequency term
beta = 0.05; % Nonlinearity coefficient
delta = 0.01; % Damping coefficient
% Random initial perturbations to simulate thermal fluctuations
initialPositions = 0.01 + (0.02-0.01).*rand(numBases,1);
initialVelocities = zeros(numBases,1); % Assuming initial rest state
% Define the differential equations
dt = 0.05; % Time step
tmax = 50; % Maximum time
tspan = 0:dt:tmax; % Time vector
x = zeros(numBases, length(tspan)); % Displacement matrix
x(:,1) = initialPositions; % Initial positions
% Velocity-Verlet algorithm for numerical integration
for i = 2:length(tspan)
% Boundary conditions: fixed ends
x(1, i) = 0;
x(numBases, i) = 0;
% Compute acceleration
acceleration = zeros(numBases,1);
for n = 2:numBases-1
acceleration(n) = kappa * (x(n+1, i-1) - 2 * x(n, i-1) + x(n-1, i-1)) ...
- delta * initialVelocities(n) - omegaD^2 * (x(n, i-1) - beta * x(n, i-1)^3);
end
% Update positions and velocities
x(:, i) = x(:, i-1) + dt * initialVelocities + 0.5 * dt^2 * acceleration;
initialVelocities = initialVelocities + dt * acceleration;
end
% Visualization of displacement over time for each base pair
figure;
hold on;
for n = 1:numBases
plot(tspan, x(n, :));
end
xlabel('Time');
ylabel('Displacement');
legend(arrayfun(@(n) ['Base ' num2str(n)], 1:numBases, 'UniformOutput', false));
title('Displacement of DNA Bases Over Time');
hold off;
1212
% Improved 3D plot for displacement
figure;
[X, T] = meshgrid(1:numBases, tspan);
surf(X', T', x, 'EdgeColor', 'none');
xlabel('Base Pair');
ylabel('Time (s)');
zlabel('Displacement (m)');
title('3D View of DNA Base Displacements');
colormap(jet); % Colorful gradient representing displacement magnitude
shading interp; % Interpolated shading for smooth appearance
colorbar; % Adds a color bar to indicate displacement magnitude
% Snapshot visualization at a specific time
snapshotTime = 10; % Desired time for the snapshot
[~, snapshotIndex] = min(abs(tspan - snapshotTime)); % Find closest index
snapshotSolution = x(:, snapshotIndex); % Extract displacement at the snapshot time
% Plotting the snapshot
figure;
stem(1:numBases, snapshotSolution, 'filled'); % Discrete plot using stem
title(sprintf('DNA Model Displacement at t = %d seconds', snapshotTime));
xlabel('Base Pair Index');
ylabel('Displacement');
% Time vector for detailed sampling
tDetailed = 0:0.5:50; % Detailed time steps
% Initialize an empty array to hold the data
data = [];
% Generate the data for 3D plotting
for i = 1:numBases
% Interpolate to get detailed solution data for each base pair
detailedSolution = interp1(tspan, x(i, :), tDetailed);
% Concatenate the current base pair's data to the main data array
data = [data; repmat(i, length(tDetailed), 1), tDetailed', detailedSolution'];
end
% 3D Plot
figure;
scatter3(data(:,1), data(:,2), data(:,3), 10, data(:,3), 'filled');
xlabel('Base Pair');
ylabel('Time');
zlabel('Displacement');
title('3D Plot of DNA Base Pair Displacements Over Time');
colorbar; % Adds a color bar to indicate displacement magnitude

Akzeptierte Antwort

Torsten
Torsten am 5 Mai 2024
Bearbeitet: Torsten am 5 Mai 2024
acceleration(1) = acceleration(numBases) = 0
for every value of i in your loop.
From the equation
initialVelocities = initialVelocities + dt * acceleration;
it follows that
initialVelocities(1) = initialVelocities(numBases) = 0
for every value of i in your loop.
From the equation
x(:, i) = x(:, i-1) + dt * initialVelocities + 0.5 * dt^2 * acceleration;
it follows that x(1,i) and x(numBases,i) remain unchanged and are equal to x(1,1) and x(numBases,1) for every value of i in the loop.
If you want to keep them as 0, you will have to update as
x(2:numBases-1, i) = x(2:numBases-1, i-1) + dt * initialVelocities(2:numBases-1) + 0.5 * dt^2 * acceleration(2:numBases-1);
  3 Kommentare
Torsten
Torsten am 5 Mai 2024
Bearbeitet: Torsten am 5 Mai 2024
I think position and velocity in the boundary points have to be prescribed.
OP chose to set position = velocity = 0 in both endpoints.
"acceleration" follows from these settings.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by