- Do you receive warning and/or error messages? If so the full and exact text of those messages (all the text displayed in orange and/or red in the Command Window) may be useful in determining what's going on and how to avoid the warning and/or error.
- Does it do something different than what you expected? If so, what did it do and what did you expect it to do?
- Did MATLAB crash? If so please send the crash log file (with a description of what you were running or doing in MATLAB when the crash occured) to Technical Support so we can investigate.
problem onn numerical solution
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
= 0.3; % Rayon de lissage
dx=0.3;
N =floor(1/dx);
x =0:dx:(pi/sqrt(3)); % Positions des particules
dt = 1/4;
t = 0:dt:1;
M = length(t) - 1;
% Initialisation de la solution approchée et de la matrice A
A = zeros(N, N);
b=zeros(N,1);
uapp=zeros(N,1);
%sol et cond exacte
u_exact = @(x) cos(sqrt(3)*x);
% Construction de la matrice A et du vecteur b
for i = 1:N
for j =N
r_ij = abs(x(i) - x(j));
if r_ij <= h
d2W_dx2 = second_derivative_monaghan_kernel(r_ij, h);
W_value = monaghan_kernel(r_ij, h);
A(i, j) = (u_exact(x(j))- u_exact(x(i))) * d2W_dx2;
b(i) = -3 * u_exact(x(j)) * W_value ;
end
end
end
u_app(1)=1;
u_app(N)=u_exact(pi/sqrt(3));
uapp = b\A;
uapp = [0; uapp];
% Affichage des résultats
plot(x , uapp, 'r');
hold on;
plot(x, u_exact(x), 'b--');
xlabel('x');
ylabel('u');
legend('Solution approchée (SPH)', 'Solution exacte');
title('Solution approchée et exacte par SPH');
grid on;
% Fonctions du noyau de Monaghan
function W_value =monaghan_kernel(r_ij, h)
C= (1/ h);
if r_ij < h
W_value =C*((2 / 3) - (r_ij / h)^2 +(1/2 *(r_ij / h)^3));
elseif r_ij<2*h
W_value =C*((1/6)*(2-(r_ij / h))^3);
else
W_value=0;
end
end
function d2W_dx2 = second_derivative_monaghan_kernel(r_ij, h)
C = (1 / h); % Corrected the denominator
if r_ij < h
d2W_dx2 = -2 * C * (1 - (3 * (r_ij / h)));
elseif r_ij < 2*h
d2W_dx2 = 2 * C * (2 - (r_ij / h)); % Removed extra characters
else
d2W_dx2 = 0;
end
end
I have a problem simulataing a numerical solution for this program
Ineed some help urgent
5 Kommentare
Torsten
am 26 Apr. 2024
It would help if you explained the problem you are trying to solve.
h = 0.3; % Rayon de lissage
?
Antworten (1)
Vinay
am 2 Sep. 2024
Hii ABDO,
The Smoothed Particle Hydrodynamics (SPH) method calculates the approximate values by solving the linear equation. The error arises in the code due to the following issues.
- Loop Mistake: In the nested loop, the variable iterates for ‘j’ = ‘N’, which should be for ‘j’ = 1:N. This means the loop is only iterating over the last element of ‘x’, causing an error.
% Construction of matrix A and vector b
for i = 1:N
for j = 1:N % Corrected loop range
r_ij = abs(x(i) - x(j));
if r_ij <= h
d2W_dx2 = second_derivative_monaghan_kernel(r_ij, h);
W_value = monaghan_kernel(r_ij, h);
% Update A(i, j) based on the interaction
A(i, j) = d2W_dx2;
% Accumulate b(i) with contributions from j
b(i) = b(i) - 3 * u_exact(x(j)) * W_value;
end
end
end
- Matrix Solver: The calculation ‘uapp’ = b\A is incorrect because ‘b’ is a column vector and ‘A’ is a square matrix. The solver solves the ‘A \ b’ to find ‘uapp’.
% Solve system
uapp = A \ b; % Solve the linear system
- Incorrect dimension: The dimension of the ‘x’ and the ‘uapp’ are not compatible, the dimension of ‘uapp’ should be same as that of ‘x’.
x = 0:dx:(pi/sqrt(3)); % Positions of particles
N = length(x); % Update N to match the length of x
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!