How to solve SIR model with using DTM (Differential Transform Method)
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
mohammad amin akhlaghi
am 16 Apr. 2024
Beantwortet: Athanasios Paraskevopoulos
am 16 Mai 2024
I am trying to use dtm for solving SIR model, Although my code is run but I think the DTM part is wrong. I need help for DTM part
here is my code
function sir_model_dtm()
% Parameters
alpha = 0.3; % Infection rate
beta = 0.1; % Recovery rate
N = 1000; % Total population
I0 = 1; % Initial number of infected individuals
R0 = 0; % Initial number of recovered individuals
S0 = N - I0 - R0; % Initial number of susceptible individuals
% Time parameters
T = 100; % Total simulation time
dt = 1; % Time step
% Initialize arrays to store results
S = zeros(1, T);
I = zeros(1, T);
R = zeros(1, T);
% Initial conditions
S(1) = S0;
I(1) = I0;
R(1) = R0;
% Simulate the SIR model using DTM
for t = 2:T
% Compute new values
S(t) = S(t-1) - alpha*S(t-1)*I(t-1)/N * dt;
I(t) = I(t-1) + (alpha*S(t-1)*I(t-1)/N - beta*I(t-1)) * dt;
R(t) = R(t-1) + beta*I(t-1) * dt;
end
% Plot the results
t = 0:dt:T-dt;
plot(t, S, 'b', t, I, 'r', t, R, 'g', 'LineWidth', 2);
legend('Susceptible', 'Infectious', 'Recovered');
xlabel('Time');
ylabel('Number of individuals');
title('SIR Model');
end
2 Kommentare
Sam Chak
am 17 Apr. 2024
Providing the mathematical formulas for Differential Transform Method would be helpful, as it saves users from having to search for it online.
Antworten (1)
Athanasios Paraskevopoulos
am 16 Mai 2024
function sir_model_dtm()
% Parameters
alpha = 0.3; % Infection rate
beta = 0.1; % Recovery rate
N = 1000; % Total population
I0 = 1; % Initial number of infected individuals
R0 = 0; % Initial number of recovered individuals
S0 = N - I0 - R0; % Initial number of susceptible individuals
% Time parameters
T = 100; % Total simulation time
dt = 1; % Time step
% Initialize arrays to store results
S = zeros(1, T);
I = zeros(1, T);
R = zeros(1, T);
% Initial conditions
S(1) = S0;
I(1) = I0;
R(1) = R0;
% Simulate the SIR model using DTM
for t = 2:T
% Current values
S_curr = S(t-1);
I_curr = I(t-1);
R_curr = R(t-1);
% Compute intermediate values using DTM (predictor step)
S_inter = S_curr - alpha * S_curr * I_curr / N * dt;
I_inter = I_curr + (alpha * S_curr * I_curr / N - beta * I_curr) * dt;
R_inter = R_curr + beta * I_curr * dt;
% Compute new values (corrector step)
S(t) = S_curr - 0.5 * dt * (alpha * S_curr * I_curr / N + alpha * S_inter * I_inter / N);
I(t) = I_curr + 0.5 * dt * ((alpha * S_curr * I_curr / N - beta * I_curr) + (alpha * S_inter * I_inter / N - beta * I_inter));
R(t) = R_curr + 0.5 * dt * (beta * I_curr + beta * I_inter);
end
% Plot the results
t = 0:dt:T-dt;
plot(t, S, 'b', t, I, 'r', t, R, 'g', 'LineWidth', 2);
legend('Susceptible', 'Infectious', 'Recovered');
xlabel('Time');
ylabel('Number of individuals');
title('SIR Model');
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu Optimization Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!