Error while using Resnet-50 for transfer learning
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am using Matlab 2024a version . I have done a transfer learning using resnet50 on a x-ray dataset (code and dataset link given below) , showing the following error. but the same code working fine for alexnet, google net etc. showing error in all resnet versions.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1669911/image.jpeg)
imds = imageDatastore('E:\dataset\chest-xray', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
figure
for i = 1:16
subplot(4,4,i)
I = readimage(imdsTrain,idx(i));
imshow(I)
end
net=resnet50;
analyzeNetwork(net)
inputSize=net.Layers(1).InputSize
layersTransfer = net.Layers(1:end-3);
numClasses = numel(categories(imdsTrain.Labels))
layers = [
layersTransfer
fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
softmaxLayer
classificationLayer];
pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter,"ColorPreprocessing","gray2rgb");
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation,"ColorPreprocessing","gray2rgb");
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');
netTransfer = trainNetwork(augimdsTrain,layers,options);
[YPred,scores] = classify(netTransfer,augimdsValidation);
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(i));
imshow(I)
label = YPred(idx(i));
title(string(label));
end
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)
0 Kommentare
Antworten (1)
Ayush Modi
am 16 Apr. 2024
Hi Bushra,
Please refer to the following MathWorks documentation for more information on:
0 Kommentare
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!