Filter löschen
Filter löschen

Optimization of parameters in template matching

3 Ansichten (letzte 30 Tage)
Jarl Bredal
Jarl Bredal am 5 Apr. 2024
Beantwortet: Catalytic am 19 Apr. 2024
I have a signal that looks like this:, and a template like this: . I want to optimize the parameters of my template function so that it fits well with the peak in the original signal. Right now I am using a function "correlationfitting" to try finding the place where the template and signal is most similar, and fmincon in order to optimize the parameters. The first three parameters are parameters of the template function, p is an offset parameter, and minID is where the function correlationfitting finds the highest similarity.
It does not work however, and I would greatly appreciate any tips or help.
Apologies for long or unclear question, thanks in advance!
x0 = [alpha lambda mu p minID];
A = -eye(5);
b = [0 0 0 0 0];
y = fmincon(@(x)costfunc(sensornr, bolusnr, x),x0,A,b);
alpha_opt = y(1);
lambda_opt = y(2);
mu_opt = y(3);
p_opt = y(4);
t_opt = y(5);
function sim_value = similarity(vec1, vec2)
sim_value = sum(vec1.*vec2)/(norm(vec2)*(norm(vec1)));
end
function sim_values = correlationfitting(raw_data,template_data)
sim_values = zeros(length(raw_data),1);
for i=1:(length(raw_data)-length(template_data)+1)
raw_chunk = raw_data(i:i+length(template_data)-1);
sim_values(i) = similarity(raw_chunk,template_data);
end
end
function cost = costfunc(sensor_values, bolustime, x)
alpha = x(1);
lambda = x(2);
mu = x(3);
p = x(4);
t_min = x(5);
t = 1:1:61;
template = alpha.*exp(lambda)/mu.*(lambda.*mu./(2.*pi.*t)).^(1/2).*exp(-lambda./2.*(t./mu+mu./t));
raw_data = read_raw(sensor_values, bolustime);
raw_dataadjusted = raw_data -p;
simvals = correlationfitting(raw_dataadjusted, template');
cost = -simvals(round(t_min));
end
  1 Kommentar
Vinayak
Vinayak am 18 Apr. 2024
Hi Jarl, it might be more helpful if we have some data to reproduce on our end.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Catalytic
Catalytic am 19 Apr. 2024
cost = interp1( -simvals, t_min,'cubic');

Kategorien

Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by