Clean noisy data from images

14 Ansichten (letzte 30 Tage)
alberto tonizzo
alberto tonizzo am 4 Apr. 2024
Kommentiert: Mathieu NOE am 16 Apr. 2024
Hey there,
I've been working with some images, averaging them out and plotting against depth (check out the code below). I'm trying to tidy up the data by getting rid of points that don't fit an exponential curve I've fitted to it. I've tried a couple of methods like filloutliers and sgolayfilt, but they haven't been working out too well. I used polyfit(depth_Sony, log(img_B_Masked_avg), 1) to fit the blue ('B') channel averages but the fit is not good because of the points that are off.
Any suggestions on a better approach? Thanks a bunch!
figure;
semilogy(depth_Sony, img_gray_Masked_avg, 'ko', 'MarkerSize', ms);
hold on;
semilogy(depth_Sony, img_R_Masked_avg, 'ro', 'MarkerSize', ms);
semilogy(depth_Sony, img_G_Masked_avg, 'go', 'MarkerSize', ms);
semilogy(depth_Sony, img_B_Masked_avg, 'bo', 'MarkerSize', ms);
xlabel('depth');
ylabel('mask avg value');
xlim([0 10]);
ylim([0.5*10^-1 10^1]);
  2 Kommentare
cui,xingxing
cui,xingxing am 5 Apr. 2024
Based on your description, image denoising the code you posted I don't see any direct relationship.
Actually MATLAB already contains many methods, traditional and deep learning cases are as follows:
alberto tonizzo
alberto tonizzo am 5 Apr. 2024
Thank you @cui,xingxing the question is more about denoising this particular dataset. Notice that the variables "img_R_Masked_avg" are vectors, not images.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Mathieu NOE
Mathieu NOE am 15 Apr. 2024
hello
this is a simple exponential fit using polyfit
I had to do a bit of manual tweaks first to slect the appropriate data
here an example on the "blue" curve
figure;
ms = 2;
ind = depth_Sony>2.5 & depth_Sony<8.5; % select valid x range (avoid large clouds)
xx = depth_Sony(ind);
yy = img_B_Masked_avg(ind);
[yy,k] = rmoutliers(yy, 'movmedian', 300, 'ThresholdFactor', 2); % remove large dips
xx(k) = [];
[b,m] = myexpfit(xx,yy); % see function below
img_B_Masked_fit = b*exp(depth_Sony*m);
semilogy(depth_Sony, img_B_Masked_avg, 'bo',xx, yy, '*r',depth_Sony, img_B_Masked_fit, 'g--', 'MarkerSize', ms);
TE = sprintf('C = %0.2fe^{%0.3ft}',b, m);
legend('raw data','extracted data',TE);
xlabel('depth');
ylabel('mask avg value');
% xlim([0 10]);
% ylim([0.5*10^-1 10^1]);
%%%%%%%%%%%
function [b,m] = myexpfit(x,y)
% exponential fit using polyfit
P = polyfit(x, log(y), 1);
m = P(1);
b = exp(P(2));
% yfit = b*exp(x*m);
end
  2 Kommentare
alberto tonizzo
alberto tonizzo am 16 Apr. 2024
Thank you! That looks good!
Mathieu NOE
Mathieu NOE am 16 Apr. 2024
tx !
as always, my pleasure !

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by