change the value of a parameter Lambda at each time step
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello everyone,
I have a code that works well when the parameters are constant. Now I'm trying to make the Lambda parameter time-dependent, but I can't do it. Can someone please help me?
function Z = fun_model(p,t,mu,Lambda)
% Unknown parameters
beta1 = p(1);
beta2 = p(2);
sigma = p(3);
eps = p(4);
gamma = p(5);
eta = p(6);
alpha = p(7);
Delta = p(8);
theta = p(9);
y0 = p(10:17); % initial conditions
a = p(18);
b= p(19);
% systems
f = @(t,y) [ mu*(y(1)+y(2)+y(3)+y(4)+y(5)) - mu*y(1) - beta1*y(1)*y(7) - beta2*y(1)*y(8); ...
beta1*y(1)*y(7) + beta2*y(1)*y(8) - sigma*y(2) - mu*y(2); ...
sigma*y(2) - eps*y(3) - mu*y(3); ...
eps*y(3) - gamma*y(4) - mu*y(4); ...
gamma*y(4) - mu*y(5); ...
eta*(y(6)+y(7)) - alpha*y(6)*y(8) - eta*y(6); ...
alpha*y(6)*y(8) - eta*y(7); ...
(a+b*Lambda)*y(8) - Delta*y(8) - theta*eta*y(7) ];
% Resolution with ode45
options = odeset('RelTol',1e-6,'AbsTol',1e-6); % Adjust tolerances for performance
[~,ypred] = ode45(f,t,y0,options);
% Return the desired output
Z = [ypred(:,3), ypred(:,7), ypred(:,8)];
end
% Experiemental data on 12 months
time = 1:12 ; % experimental time 12 months
Yc = [20 18 19 24 28 26 25 24 20 19 21 19]' ; % Bu cases
W = [0.14 0.08 0.18 0.08 0 0.37 0.24 0.18 0 0.1 0.08 0.05]'; % MU prevalence in vectors
U = [0.05 0.02 0.05 0.07 0 0.09 0.1 0.16 0.05 0.13 0.07 0.06]'; %MU positivity
beta1 = 0.1; beta2 = 0.1; sigma = 0.2; eps = 0.16; gamma = 0.17;
eta = 0.7; alpha = 0.8; Delta = 0.7; theta = 0.9;
y0 = [6500; 0; 20; 0; 0; 0.63; 0.37; 1] ; a=1; b=1;
mu = 0.00216; % Mortality/fertility rate 2,6% by year
Lambda = 0.29;
p0 = [beta1; beta2; sigma; eps; gamma; eta; alpha; Delta; theta; y0; a; b] ; % Initial guess for parameters
%Parameter upper, lower, and Using lsqcurvefit to adjust model parameters
lb = [0, 0, 1/5, 1/6, 1/6, 0, 0, 0, 0, 0,0,0,0,0,0,0,0, -inf,-inf]; % lower bound
ub = [1, 1, 1/3, 1.0, 1/2, 1, 1, 1, 1, 10^5,50,50,50,50,2,2,3, inf,inf]; % upper bound
opts = optimoptions('lsqcurvefit');
opts.MaxFunEvals = 10000;
[p_fit,resnorm,residual,exitflag,output,jacobian] = lsqcurvefit(@(p,t) fun_model(p,t,mu,Lambda),p0,time,[Yc,W,U],lb,ub,opts);
0 Kommentare
Akzeptierte Antwort
Torsten
am 3 Apr. 2024
Bearbeitet: Torsten
am 3 Apr. 2024
% Experiemental data on 12 months
time = 1:12 ; % experimental time 12 months
Yc = [20 18 19 24 28 26 25 24 20 19 21 19]' ; % Bu cases
W = [0.14 0.08 0.18 0.08 0 0.37 0.24 0.18 0 0.1 0.08 0.05]'; % MU prevalence in vectors
U = [0.05 0.02 0.05 0.07 0 0.09 0.1 0.16 0.05 0.13 0.07 0.06]'; %MU positivity
beta1 = 0.1; beta2 = 0.1; sigma = 0.2; eps = 0.16; gamma = 0.17;
eta = 0.7; alpha = 0.8; Delta = 0.7; theta = 0.9;
y0 = [6500; 0; 20; 0; 0; 0.63; 0.37; 1] ; a=1; b=1;
mu = 0.00216; % Mortality/fertility rate 2,6% by year
Lambda = @(t) ??? % Your time-dependent function for Lambda
p0 = [beta1; beta2; sigma; eps; gamma; eta; alpha; Delta; theta; y0; a; b] ; % Initial guess for parameters
%Parameter upper, lower, and Using lsqcurvefit to adjust model parameters
lb = [0, 0, 1/5, 1/6, 1/6, 0, 0, 0, 0, 0,0,0,0,0,0,0,0, -inf,-inf]; % lower bound
ub = [1, 1, 1/3, 1.0, 1/2, 1, 1, 1, 1, 10^5,50,50,50,50,2,2,3, inf,inf]; % upper bound
opts = optimoptions('lsqcurvefit');
opts.MaxFunEvals = 10000;
[p_fit,resnorm,residual,exitflag,output,jacobian] = lsqcurvefit(@(p,t) fun_model(p,t,mu,Lambda),p0,time,[Yc,W,U],lb,ub,opts);
function Z = fun_model(p,t,mu,Lambda)
% Unknown parameters
beta1 = p(1);
beta2 = p(2);
sigma = p(3);
eps = p(4);
gamma = p(5);
eta = p(6);
alpha = p(7);
Delta = p(8);
theta = p(9);
y0 = p(10:17); % initial conditions
a = p(18);
b= p(19);
% systems
f = @(t,y) [ mu*(y(1)+y(2)+y(3)+y(4)+y(5)) - mu*y(1) - beta1*y(1)*y(7) - beta2*y(1)*y(8); ...
beta1*y(1)*y(7) + beta2*y(1)*y(8) - sigma*y(2) - mu*y(2); ...
sigma*y(2) - eps*y(3) - mu*y(3); ...
eps*y(3) - gamma*y(4) - mu*y(4); ...
gamma*y(4) - mu*y(5); ...
eta*(y(6)+y(7)) - alpha*y(6)*y(8) - eta*y(6); ...
alpha*y(6)*y(8) - eta*y(7); ...
(a+b*Lambda(t))*y(8) - Delta*y(8) - theta*eta*y(7) ];
% Resolution with ode45
options = odeset('RelTol',1e-6,'AbsTol',1e-6); % Adjust tolerances for performance
[~,ypred] = ode45(f,t,y0,options);
% Return the desired output
Z = [ypred(:,3), ypred(:,7), ypred(:,8)];
end
1 Kommentar
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!