Optimisation changes parameter values ever so slightly when iterating making it ineffective, they keep being very close to my initial guess rather than being whole numbers.

1 Ansicht (letzte 30 Tage)
close all;
clear;
clc;
format long;
%% NOW SAME THING BUT FOR THE STRAIGHT WIRE
load y0_Straight_Wire.mat y0 H_tr Piston_Pos0
load Pantograph_results_Straight.mat yout tout
%% Subtracting train-roof height from all vertical DOF
y0(2,:) = y0(2,:) - H_tr;
y0(5,:) = y0(5,:) - H_tr;
y0(8,:) = y0(8,:) - H_tr;
y0(11,:) = y0(11,:) - H_tr;
y0(14,:) = y0(14,:) - H_tr;
y0(17,:) = y0(17,:) - H_tr;
y0(20,:) = y0(20,:) - H_tr;
y0(23,:) = y0(23,:) - H_tr;
Atmos = 101325;
PeS = 4.59362E5*(1-0.0)+Atmos;%bar %70N regulator setting
%Pe=4.854989763905562E5*(1-0.0)+Atmos;%bar % 90N regulator setting
t_inputS = 0:0.001:11;
Piston_Pos0S = Piston_Pos0;
DorificeS = 0.002; %Orifice diameter of pneumatic system
e_20 = y0(6);
e_60 = y0(18);
R_20 = y0(4:5);
R_60 = y0(16:17);
At_2 = [cos(e_20), -sin(e_20); sin(e_20), cos(e_20)];
At_6 = [cos(e_60), -sin(e_60); sin(e_60), cos(e_60)];
u2_Ax = -0.66;
u2_Ay = 0.136;
u2_A = [u2_Ax; u2_Ay];
u6_Fx=-0.044;%%%%%%%%%?
u6_Fy=-0.043;
u6_F = [u6_Fx;u6_Fy];
r26 = R_20 + (At_2*u2_A) - (R_60 + (At_6*u6_F));
l_26s = norm(r26); %initial length of spring-damper system
y0s = y0;
t_input = 0:0.001:11;
d_panhead = interp1(tout,yout(20,:)-H_tr,t_input);
h = t_input(2)-t_input(1);
v_panhead = gradient(d_panhead,t_input);
a_panhead = gradient(v_panhead,t_input);
H = [d_panhead;
v_panhead;
a_panhead;
t_input];
Hs = H;
u_f1_2_=[-0.650;-0.061];
u_f1_1_=[0.647;0.039];
L0_pistonS = pneumatic_actuator_length_function(u_f1_2_,u_f1_1_,y0(4:6),y0(1:3)); %Initial terminal length between base and lower-arm
%% Loading Pantograph initial conditions and Panhead input
load y0_Gradient_1_150DM_S0_800_4.mat y0 H_tr Piston_Pos0
load Pantograph_results_1_150DM_Default.mat yout tout
%% Subtracting train-roof height from all vertical DOF
y0(2,:) = y0(2,:) - H_tr;
y0(5,:) = y0(5,:) - H_tr;
y0(8,:) = y0(8,:) - H_tr;
y0(11,:) = y0(11,:) - H_tr;
y0(14,:) = y0(14,:) - H_tr;
y0(17,:) = y0(17,:) - H_tr;
y0(20,:) = y0(20,:) - H_tr;
y0(23,:) = y0(23,:) - H_tr;
Atmos = 101325;
Pe = 4.59362E5*(1-0.0)+Atmos;%bar %70N regulator setting
%Pe=4.854989763905562E5*(1-0.0)+Atmos;%bar % 90N regulator setting
c2 = 20.6865; %Head suspension damping
%% Calculating the initial legth of my spring-damper system:
e_20 = y0(6);
e_60 = y0(18);
R_20 = y0(4:5);
R_60 = y0(16:17);
At_2 = [cos(e_20), -sin(e_20); sin(e_20), cos(e_20)];
At_6 = [cos(e_60), -sin(e_60); sin(e_60), cos(e_60)];
u2_Ax = -0.66;
u2_Ay = 0.136;
u2_A = [u2_Ax; u2_Ay];
u6_Fx=-0.044;%%%%%%%%%?
u6_Fy=-0.043;
u6_F = [u6_Fx;u6_Fy];
r26 = R_20 + (At_2*u2_A) - (R_60 + (At_6*u6_F));
l_26_0 = norm(r26); %initial length of spring-damper system
%% Setting up input
t_input = 0:0.001:25; %the input timeframe
d_panhead = interp1(tout,yout(20,:)-H_tr,t_input);
h = t_input(2)-t_input(1);
v_panhead = gradient(d_panhead,t_input);
a_panhead = gradient(v_panhead,t_input);
H = [d_panhead;
v_panhead;
a_panhead;
t_input];
u_f1_2_=[-0.650;-0.061];
u_f1_1_=[0.647;0.039];
L0_piston = pneumatic_actuator_length_function(u_f1_2_,u_f1_1_,y0(4:6),y0(1:3)); %Initial terminal length between base and lower-arm
c_body4 = [0.811;-0.001];
Dorifice = 0.002; %Orifice diameter of pneumatic system
%% OPTIMIZATION PARAMETERS
% Define initial guess for parameters [k, c, b]
%initial_params = [78, 10, 6];
% Define initial guess for parameters [k, c, b]
initial_params = [1, 1, 1];
% Define lower and upper bounds for parameters
lb = [0, 0, 0]; % Lower bounds for k, c, b
ub = [1000, 1000, 100]; % Upper bounds for k, c, b
% Define the nonlinear constraint function
nonlcon = @(params) constraint_function(params, y0s, l_26s, PeS, t_inputS, Hs, L0_pistonS, DorificeS, Piston_Pos0S);
% Define patternsearch options including the nonlinear constraint
opts = optimoptions('patternsearch', 'MaxIterations', 10 , 'MaxFunctionEvaluations', 100, 'PlotFcn', @psplotbestf, 'Display', 'iter', 'UseCompletePoll', true, 'StepTolerance', 1e-6);
global n
n = 1;
% Perform optimization using patternsearch with the nonlinear constraint
[opt_params, min_cost] = patternsearch(@(params) simulate_and_calculate_std(params, y0, l_26_0, Pe, t_input,H,L0_piston,Dorifice,Piston_Pos0), initial_params, [], [], [], [], lb, ub, nonlcon, opts);
% Output optimal parameters and minimum cost
disp('Optimal Parameters:');
disp(opt_params);
disp(['Minimum Cost (STDd): ', num2str(min_cost)]);
% Define nonlinear constraint function
function [c, ceq] = constraint_function(params, y0s, l_26s, PeS, t_inputS, Hs, L0_pistonS, DorificeS, Piston_Pos0S)
% Evaluate the constraint function "straight_constraint" with parameters "params"
constraint_value = straight_constraint(params, y0s,l_26s,PeS,t_inputS,Hs,L0_pistonS,DorificeS,Piston_Pos0S);
% Define the inequality constraint: constraint_value <= 15.66
c = constraint_value - 15.66;
% There are no equality constraints, so ceq is empty
ceq = [];
end
  2 Kommentare
mikhail
mikhail am 29 Mär. 2024
This is what my output looks like: This is iteration number:1
1 1 1
The current standart deviation FOR A GRADIENT CASE: 21.3982
This is iteration number: 1this is a straight WIRE check
1 1 1
The current standard deviation FOR A STRAIGHT WIRE: 15.6751
Max
Iter Func-count f(x) Constraint MeshSize Method
0 1 21.3982 0.01509 1
This is iteration number: 1this is a straight WIRE check
1 1 1
The current standard deviation FOR A STRAIGHT WIRE: 15.6751
This is iteration number:2
1 1 1
The current standart deviation FOR A GRADIENT CASE: 21.3982
This is iteration number: 2this is a straight WIRE check
1 1 1
The current standard deviation FOR A STRAIGHT WIRE: 15.6751
This is iteration number: 2this is a straight WIRE check
1 1 1
The current standard deviation FOR A STRAIGHT WIRE: 15.6751
This is iteration number: 2this is a straight WIRE check
1.000000014901161 1.000000000000000 1.000000000000000
The current standard deviation FOR A STRAIGHT WIRE: 15.6751
This is iteration number: 2this is a straight WIRE check
1.000000000000000 1.000000014901161 1.000000000000000
Torsten
Torsten am 30 Mär. 2024
If the values of some or all your solution variables are "whole numbers", you have to use "ga" together with the array "intcon" to define them as such.
Solution methods that are based on the differentiability of objective function and constraints with respect to the solution variables are not suited in this case.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Umang Pandey
Umang Pandey am 21 Mai 2024
Bearbeitet: Umang Pandey am 21 Mai 2024
Hi Mikhail,
From what I understand, you want integer solutions to your problem.
As @Torsten pointed out, "ga" can solve problems when certain variables are integer-valued. Give "intcon", a vector of the x components that are integers:
[x,fval,exitflag] = ga(fitnessfcn,nvars,A,b,[],[],...
lb,ub,nonlcon,intcon,options)
You can refer to the following MATLAB documentation on "Mixed Integer ga Optimization":
Hope this helps!
Best,
Umang

Kategorien

Mehr zu Optimization finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by