How to obtain the standard deviation of the fitting parameters?
23 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Qili Hu
am 21 Mär. 2024
Kommentiert: Star Strider
am 22 Mär. 2024
I have a question about how to obtain the standard deviation of the fitting parameters according to the following program codes.
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.53];
plot(x,y,'bo');
hold on
pause(0.1);
beta0=[39,0.002];
% syms n t
% fun=@(beta,t) beta(1)*(1-6/(pi^2)*symsum((1./n.^2).*exp(-beta(2)*(n.^2).*t),n,1,Inf));
% betafit = nlinfit(x,y,fun,beta0);
beta1=beta0;
delta = 1e-8; % desired objective accuracy
R0=Inf; % initial objective function
for K=1:10000
fun=@(beta,t) beta(1)*(1-6/(pi^2)*sum((1./(1:K)'.^2).*exp(-beta(2)*((1:K)'.^2).*t),1));
[betafit,R] = nlinfit(x,y,fun,beta1);
R = sum(R.^2);
if abs(R0-R)<delta
break;
end
beta1=betafit;
R0 = R;
end
plot(x,fun(betafit,x),'.-r');
xlabel('x');
ylabel('y');
legend('experiment','model');
title(strcat('\beta=[',num2str(betafit),'];----stopped at--','K=',num2str(K)));
0 Kommentare
Akzeptierte Antwort
Star Strider
am 21 Mär. 2024
The most meaningful measure of the parameters is the confidence interval. You could possibly recover some information from the covariance matrix ‘CovB’, however that would take some effort.
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.53];
plot(x,y,'bo');
hold on
pause(0.1);
beta0=[39,0.002];
% syms n t
% fun=@(beta,t) beta(1)*(1-6/(pi^2)*symsum((1./n.^2).*exp(-beta(2)*(n.^2).*t),n,1,Inf));
% betafit = nlinfit(x,y,fun,beta0);
beta1=beta0;
delta = 1e-8; % desired objective accuracy
R0=Inf; % initial objective function
% K=1:10000;
for K=1:10000
fun=@(beta,t) beta(1)*(1-6/(pi^2)*sum((1./(1:K)'.^2).*exp(-beta(2)*((1:K)'.^2).*t),1));
[betafit,Rv,J,CovB,MSE] = nlinfit(x,y,fun,beta1);
R = sum(Rv.^2);
if abs(R0-R)<delta
break;
end
beta1=betafit;
R0 = R;
end
fprintf('\nbeta = %8.4f\nbeta = %8.4f\n\n',beta1)
CovMtx = CovB
ci = nlparci(beta1,Rv,'Covar',CovB)
plot(x,fun(betafit,x),'.-r');
xlabel('x');
ylabel('y');
legend('experiment','model', 'Location','best');
title(strcat('\beta=[',num2str(betafit),'];----stopped at--','K=',num2str(K)));
.
6 Kommentare
Star Strider
am 22 Mär. 2024
It seems that you only copied part of my code.
When I provided the rest of it (slightly modified from the earlier version), it works as expected —
x=[0 5 10 15 20 30 45 60 75 90 105 120];
y=[0 3.87 4.62 4.98 5.21 5.40 5.45 5.50 5.51 5.52 5.54 5.50];
plot(x,y,'ro','MarkerFaceColor','r');
hold on
beta0=[5,0.1];
beta1=beta0;
delta=1e-8;
R0=Inf;
for n=1:15000
fun=@(beta,t) beta(1)*(1-6/(pi^2)*sum((1./(1:n)'.^2).*exp(-beta(2)*((1:n)'.^2).*t),1));
[betafit,Rv,J,CovB,MSE]=nlinfit(x,y,fun,beta1);
R=sum(Rv.^2);
if abs(R0-R)<delta
break;
end
beta1=betafit;
R0=R;
end
% CovMtx=CovB;
betav = beta1(:) % Convert 'beta1' To The column Vector 'betav'
ci=nlparci(beta1,Rv,'Covar',CovB) % PArameter Confidence Intervals
tci=tinv([0.025 0.975],12-2); % Inverse 't' Distribution
sigma=((ci-betav)./tci)*sqrt(12) % Calculate Standard Deviations
fprintf('Beta(1) = %8.4f\t\tStandatrd Deviation = %8.4f\nBeta(2) = %8.4f\t\tStandatrd Deviation = %8.4f\n',[betav sigma(:,1)].')
plot(x,fun(betafit,x),'-r');
xlabel('t (min)');
ylabel('qt (mg/g)');
title(strcat('\beta=[',num2str(betafit),'];----stopped at--','n=',num2str(n)));
I added the fprintf call to be certain that there are no ambiguities.
.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Descriptive Statistics finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!