Error using dlarray/dlgradient : Value to differentiate is non-scalar. It must be a traced real dlarray scalar.

21 Ansichten (letzte 30 Tage)
Hello, I want to train a Seq_to_one regression problem using a mae loss function found at "https://www.mathworks.com/help/deeplearning/ug/define-custom-regression-output-layer.html"
Input are :
X_train1 is 9x27 double array
Y_train2 is 9x3 double array
data_0.xlsx and mae loss function m file are attached
error occurred :
Error using trainNetwork
Error using 'backwardLoss' in Layer maeRegressionLayer. The function threw an error and could not be executed.
Caused by:
Error using dlarray/dlgradient
Value to differentiate is non-scalar. It must be a traced real dlarray scalar.
numChannels = 1;
numResponses = 3;
numHiddenUnits2 = 3;
X_train1 = xlsread('data_0.xlsx',1,'A2:AA10');
X_train2 = num2cell(X_train1,2);
Y_train2 = xlsread('data_0.xlsx',2,'A2:C10');
layers = [ ...
sequenceInputLayer(numChannels,Normalization="zscore")
gruLayer(numHiddenUnits2,OutputMode="last")
fullyConnectedLayer(3)
maeRegressionLayer('mae')];
opts = trainingOptions('adam',...
'MaxEpochs',3000000,...
'GradientThreshold',0.1,...
'InitialLearnRate',0.01,...
'MiniBatchSize',27,...
'ResetInputNormalization',false, ...
'VerboseFrequency',50, ...
'Plots','training-progress');
[net1,info] = trainNetwork(X_train2, Y_train2, layers, opts);
save net1;

Akzeptierte Antwort

Venu
Venu am 19 Mär. 2024
Try making these 2 modifications:
1. Use "mean(meanAbsoluteError, 'all')" to calculate the MAE. This simplifies the calculation and ensures that the loss is aggregated across all dimensions, resulting in a scalar value. This change is crucial because the training function expects a single scalar loss value to optimize, not an array of losses.
2. In custom layers, especially for regression tasks, both forwardLoss and backwardLoss methods need to be properly defined. Add "backwardLoss" method which calculates the gradient of the loss with respect to the predictions, which is essential for backpropagation during training.
classdef maeRegressionLayer < nnet.layer.RegressionLayer ...
& nnet.layer.Acceleratable
% Example custom regression layer with mean-absolute-error loss.
methods
function layer = maeRegressionLayer(name)
% layer = maeRegressionLayer(name) creates a
% mean-absolute-error regression layer and specifies the layer
% name.
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = 'Mean absolute error';
end
function loss = forwardLoss(~, Y, T)
% Calculate MAE.
meanAbsoluteError = abs(Y-T);
% Take mean over all elements.
loss = mean(meanAbsoluteError, 'all');
end
function dLdY = backwardLoss(~, Y, T)
% dLdY = backwardLoss(layer, Y, T) returns the derivatives of the
% MAE loss with respect to the predictions Y.
% Calculate gradients
R = size(Y,3);
N = size(Y,4);
dLdY = sign(Y - T) / (R * N);
end
end
end
Hope this helps!

Weitere Antworten (0)

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by