In solving linear programming problems, I limit the type of each element of Matrix x to integer, but the solved x element contains decimals
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
clc, clear, a = importdata('data2_10.xlsx');
a(isnan(a))=0; %把不确定值NaN替换为0
M=10^7; w=ones(14)*M;
for i=1:14
for j=1:14
if i~=j, w(i,j)=sum(a(:,i).*a(:,j)); end
end
end
n=15; w(n,n)=M; prob=optimproblem;
x=optimvar('x',n,n,'Type','integer','LowerBound',0,'UpperBound',1);
u=optimvar('u',n,'LowerBound',0) %序号变量
prob.Objective=sum(sum(w.*x));
prob.Constraints.con1=[sum(x,2)==1; sum(x,1)'==1; u(1)==0];
con2 = optimconstr(n*(n-1)); k=0;
for i=1:n
for j=2:n
k=k+1; con2(k)=u(i)-u(j)+n*x(i,j)<=n-1;
end
end
prob.Constraints.con2 = con2;
prob.Constraints.con3 = [1<=u(2:end)'; u(2:end)'<=14];
[sol, fval, flag]=solve(prob)
xx=sol.x; [i,j]=find(xx);
fprintf('xij=1对应的行列位置如下:\n')
ij=[i'; j']
0 Kommentare
Akzeptierte Antwort
Rishi
am 20 Mär. 2024
Hi 晓辉,
I understand from your question that even though you specify the type of each element to be integer for the matrix 'x', you get decimal values in the solution.
This happens because when you set the data type constaint to integer, the output actually has a tolerance value by which the solution can deviate from an integer value. Simply put, if the tolerance value is 't', and your solution variable is 's', then the value of 's' can range from 'i' +/- 't', where 'i' is any integer.
This tolerance value is specified by the parameter 'IntegerTolerance', which can be set or changed using 'optimoptions'. The default value of 'IntegerTolerance' is 1e-5, and it can be set from 1e-6 to 1e-3 in MATLAB R2023b. I have updated your code by setting this tolerance to 1e-6, and the output shows that most of the values are now integers. Also, I have taken a random matrix ranging from -10 to 10 as 'a'.
a = -10 + 20*rand(14,14);
a(isnan(a))=0; %把不确定值NaN替换为0
M=10^7; w=ones(14)*M;
for i=1:14
for j=1:14
if i~=j, w(i,j)=sum(a(:,i).*a(:,j)); end
end
end
n=15; w(n,n)=M; prob=optimproblem;
x=optimvar('x',n,n,'Type','integer','LowerBound',0,'UpperBound',1);
u=optimvar('u',n,'LowerBound',0) %序号变量
prob.Objective=sum(sum(w.*x));
prob.Constraints.con1=[sum(x,2)==1; sum(x,1)'==1; u(1)==0];
con2 = optimconstr(n*(n-1)); k=0;
for i=1:n
for j=2:n
k=k+1; con2(k)=u(i)-u(j)+n*x(i,j)<=n-1;
end
end
prob.Constraints.con2 = con2;
prob.Constraints.con3 = [1<=u(2:end)'; u(2:end)'<=14];
options = optimoptions(prob);
options.IntegerTolerance = 1e-06;
[sol, fval, flag]=solve(prob)
xx=sol.x; [i,j]=find(xx);
fprintf('xij=1对应的行列位置如下:\n')
ij=[i'; j'];
Here is the screenshot of the output:
You can learn more about 'optimoptions' and other parameters available for solver of type 'intlinprog' from the below documentations:
Furthermore, MATLAB R2024a has an updated range for 'IntegerTolerance' from 1e-10 to 1e-3, so you can consider upgrading your version if you need more precision. Here is the documentation for the same.
Hope this helps!
3 Kommentare
Rishi
am 20 Mär. 2024
Hi,
I ran the code on the xlsx file provided by you, and found the following output, which is the same as yours. I've attached the screenshot below:
As can be seen in the output, the data in decimal is actually very small of the order 10^-16 and 10^-17, hence is within the tolerance limits.
I hope this clarifies your doubt.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Big Data Processing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!