Need help to fit the data without error.
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
% Data
rData = [5.3571429, 0.096854535; 10.714286, 0.055104186; 16.071429, 0.042811499; 21.428571, 0.024825886; 26.785714, 0.023279183; 32.142857, 0.016328542; 37.5, 0.0092185037; 42.857143, 0.0075624777; 48.214286, 0.0023514323; 53.571429, 0.001637045; 58.928571, -0.0024887011; 64.285714, -0.0034741333; 69.642857, -0.0056340032; 75, -0.0040906991; 80.357143, -0.0039738424; 85.714286, -0.0044593789; 91.071429, -0.0054884315; 96.428571, -0.0037277341; 101.78571, -0.0041691748; 107.14286, -0.0039292558; 112.5, -0.0037408923; 117.85714, -0.0040700255; 123.21429, -0.0028904555; 128.57143, -0.0022557232; 133.92857, -0.0020756487; 139.28571, -0.0020739949; 144.64286, -0.0015149035; 150, -0.0019796368; 155.35714, -0.00068430865; 160.71429, -0.00060721168; 166.07143, -0.00055972397; 171.42857, -0.0011788755; 176.78571, -0.00090675531; 182.14286, -0.00060012026; 187.5, 7.6071311e-6];
tData = [5.3571429, 0.081473653; 10.714286, -0.0076210718; 16.071429, -0.038565046; 21.428571, -0.014000405; 26.785714, -0.042161254; 32.142857, -0.071404281; 37.5, -0.066992712; 42.857143, -0.031355057; 48.214286, -0.02043848; 53.571429, -0.025259291; 58.928571, -0.019615094; 64.285714, -0.015185751; 69.642857, -0.012213914; 75, -0.0047624032; 80.357143, -0.00041652762; 85.714286, 0.0028162852; 91.071429, 0.00979253; 96.428571, 0.0080315783; 101.78571, 0.0034739882; 107.14286, 0.0021786814; 112.5, 0.0043349925; 117.85714, 0.0053397331; 123.21429, 0.0061087654; 128.57143, 0.0028425693; 133.92857, 0.002129577; 139.28571, 0.0068534431; 144.64286, 0.0071201038; 150, 0.0099290536; 155.35714, 0.0089545127; 160.71429, 0.0079282308; 166.07143, 0.0075533041; 171.42857, 0.01092774; 176.78571, 0.012219652; 182.14286, 0.01013098; 187.5, 0.0096622622];
% Define equations
syms x;
mu = sym('mu'); lambda = sym('lambda'); ke = sym('ke'); ko = sym('ko');
Alpha = @(mu, lambda) 1/(2*mu + lambda);
r = @(x) x;
theta = @(x) x;
% Define equations
eqn1 = x^2*diff(r(x), x, x) + x*diff(r(x), x) - r(x) + Alpha(mu, lambda)^-1*ke^2*x^2*r(x) - Alpha(mu, lambda)^-1*ko^2*x^2*theta(x) == 0;
eqn2 = x^2*diff(theta(x), x, x) + x*diff(theta(x), x) - theta(x) + mu^-1*ko^2*x^2*r(x) + mu^-1*ke^2*x^2*theta(x) == 0;
% Convert symbolic equations to function handles
eqn1_func = matlabFunction(eqn1);
eqn2_func = matlabFunction(eqn2);
% Define the model
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);
% Fit the data with initial guess values
initialGuess = [15, 50, 0.01, 0.01];
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
fit2 = lsqcurvefit(@(params, x) funr(params, x), initialGuess, tData(:,1).', tData(:,2).');
% Plot the fitted functions
x_values = linspace(1, 187.5, 1000);
r_fit = funr(fit, x_values);
theta_fit = funr(fit2, x_values);
figure;
plot(x_values, r_fit, 'r', 'LineWidth', 2);
hold on;
scatter(rData(:,1), rData(:,2), 'b');
xlabel('x');
ylabel('r(x)');
title('Fitted r(x) vs. Data');
legend('Fitted r(x)', 'Data');
figure;
plot(x_values, theta_fit, 'g', 'LineWidth', 2);
hold on;
scatter(tData(:,1), tData(:,2), 'b');
xlabel('x');
ylabel('theta(x)');
title('Fitted theta(x) vs. Data');
legend('Fitted theta(x)', 'Data');
Getting folowwing errors:
Error using symengine>@(ke,ko,mu,x)(ke.^2.*x.^3)./mu+(ko.^2.*x.^3)./mu==0.0
Too many input arguments.
Error in test5>@(x,y)[eqn1_func(params(1),params(2),params(3),params(4),x);eqn2_func(params(1),params(2),params(3),params(4),x)] (line 21)
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);
Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 107)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
Error in test5>@(params,x)deval(ode45(@(x,y)[eqn1_func(params(1),params(2),params(3),params(4),x);eqn2_func(params(1),params(2),params(3),params(4),x)],[0.75,187.5],[0.1625,0]),x,1) (line 21)
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);
Error in test5>@(params,x)funr(params,x) (line 25)
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
Error in lsqcurvefit (line 225)
initVals.F = feval(funfcn_x_xdata{3},xCurrent,XDATA,varargin{:});
Error in test5 (line 25)
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
Caused by:
Failure in initial objective function evaluation. LSQCURVEFIT cannot continue.
4 Kommentare
Antworten (1)
Torsten
am 4 Mär. 2024
Bearbeitet: Torsten
am 5 Mär. 2024
I assumed you start integration at x = 5.3571429.
You will need to specify dr/dx and dtheta/dx in the y0-vector below.
rData = [5.3571429, 0.096854535; 10.714286, 0.055104186; 16.071429, 0.042811499; 21.428571, 0.024825886; 26.785714, 0.023279183; 32.142857, 0.016328542; 37.5, 0.0092185037; 42.857143, 0.0075624777; 48.214286, 0.0023514323; 53.571429, 0.001637045; 58.928571, -0.0024887011; 64.285714, -0.0034741333; 69.642857, -0.0056340032; 75, -0.0040906991; 80.357143, -0.0039738424; 85.714286, -0.0044593789; 91.071429, -0.0054884315; 96.428571, -0.0037277341; 101.78571, -0.0041691748; 107.14286, -0.0039292558; 112.5, -0.0037408923; 117.85714, -0.0040700255; 123.21429, -0.0028904555; 128.57143, -0.0022557232; 133.92857, -0.0020756487; 139.28571, -0.0020739949; 144.64286, -0.0015149035; 150, -0.0019796368; 155.35714, -0.00068430865; 160.71429, -0.00060721168; 166.07143, -0.00055972397; 171.42857, -0.0011788755; 176.78571, -0.00090675531; 182.14286, -0.00060012026; 187.5, 7.6071311e-6];
tData = [5.3571429, 0.081473653; 10.714286, -0.0076210718; 16.071429, -0.038565046; 21.428571, -0.014000405; 26.785714, -0.042161254; 32.142857, -0.071404281; 37.5, -0.066992712; 42.857143, -0.031355057; 48.214286, -0.02043848; 53.571429, -0.025259291; 58.928571, -0.019615094; 64.285714, -0.015185751; 69.642857, -0.012213914; 75, -0.0047624032; 80.357143, -0.00041652762; 85.714286, 0.0028162852; 91.071429, 0.00979253; 96.428571, 0.0080315783; 101.78571, 0.0034739882; 107.14286, 0.0021786814; 112.5, 0.0043349925; 117.85714, 0.0053397331; 123.21429, 0.0061087654; 128.57143, 0.0028425693; 133.92857, 0.002129577; 139.28571, 0.0068534431; 144.64286, 0.0071201038; 150, 0.0099290536; 155.35714, 0.0089545127; 160.71429, 0.0079282308; 166.07143, 0.0075533041; 171.42857, 0.01092774; 176.78571, 0.012219652; 182.14286, 0.01013098; 187.5, 0.0096622622];
initialGuess = [15, 50, 0.01, 0.01,...
rData(1,2),(rData(2,2)-rData(1,2))/(rData(2,1)-rData(1,1)),...
tData(1,2),(tData(2,2)-tData(1,2))/(tData(2,1)-tData(1,1))];
options = optimset('MaxFunEvals',10000,'MaxIter',10000);
fit = lsqnonlin( @(params)fitfun(params,rData,tData), initialGuess,[0 0 0 0 -Inf -Inf -Inf -Inf],[],options)
norm(fitfun(initialGuess,rData,tData))
norm(fitfun(fit,rData,tData))
[T,Y] = odefun(fit,rData,tData);
figure(1)
hold on
plot(rData(:,1),rData(:,2),'o')
plot(T,Y(:,1))
hold off
figure(2)
hold on
plot(tData(:,1),tData(:,2),'o')
plot(T,Y(:,3))
hold off
function res = fitfun(params,rData,tData)
[T,Y] = odefun(params,rData,tData);
res = [rData(:,2)-Y(:,1);tData(:,2)-Y(:,3)];
end
function [T,Y] = odefun(params,rData,tData)
mu = params(1);
lambda = params(2);
ke = params(3);
ko = params(4);
fun = @(x,y)[y(2);(-x*y(2)+y(1)-ke^2*x^2/(2*mu+lambda)*y(1)+ko^2*x^2*y(3)/(2*mu+lambda))/x^2;...
y(4);(-x*y(4)+y(3)-ko^2/mu*x^2*y(1)-ke^2/mu*x^2*y(3))/x^2];
tspan = rData(:,1);
y0 = [params(5);params(6);params(7);params(8)]; %[r,dr/dx,theta,dtheta/dx]
[T,Y] = ode45(fun,tspan,y0);
end
9 Kommentare
Torsten
am 13 Mär. 2024
Bearbeitet: Torsten
am 13 Mär. 2024
You have one fit in your code above from which you get Ke, Ko, mu and lamda by solving 4 differential equations for r, r', t and t' simultaneously. I don't know what you mean by
Till now, I was varying those four parameters of mu, lamda, ke and ko for these two fittings (i.e. r(x) vs x and t(x) vs x). That means I am getting Ke_r, Ko_r, mu_r and lamda_r for r(x) vs x. For, t(x) vs x I am getting ke_t, ko_t, mu_t and lamda_t.
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!