Need help to fit the data without error.

4 Ansichten (letzte 30 Tage)
tuhin
tuhin am 4 Mär. 2024
Bearbeitet: Torsten am 13 Mär. 2024
% Data
rData = [5.3571429, 0.096854535; 10.714286, 0.055104186; 16.071429, 0.042811499; 21.428571, 0.024825886; 26.785714, 0.023279183; 32.142857, 0.016328542; 37.5, 0.0092185037; 42.857143, 0.0075624777; 48.214286, 0.0023514323; 53.571429, 0.001637045; 58.928571, -0.0024887011; 64.285714, -0.0034741333; 69.642857, -0.0056340032; 75, -0.0040906991; 80.357143, -0.0039738424; 85.714286, -0.0044593789; 91.071429, -0.0054884315; 96.428571, -0.0037277341; 101.78571, -0.0041691748; 107.14286, -0.0039292558; 112.5, -0.0037408923; 117.85714, -0.0040700255; 123.21429, -0.0028904555; 128.57143, -0.0022557232; 133.92857, -0.0020756487; 139.28571, -0.0020739949; 144.64286, -0.0015149035; 150, -0.0019796368; 155.35714, -0.00068430865; 160.71429, -0.00060721168; 166.07143, -0.00055972397; 171.42857, -0.0011788755; 176.78571, -0.00090675531; 182.14286, -0.00060012026; 187.5, 7.6071311e-6];
tData = [5.3571429, 0.081473653; 10.714286, -0.0076210718; 16.071429, -0.038565046; 21.428571, -0.014000405; 26.785714, -0.042161254; 32.142857, -0.071404281; 37.5, -0.066992712; 42.857143, -0.031355057; 48.214286, -0.02043848; 53.571429, -0.025259291; 58.928571, -0.019615094; 64.285714, -0.015185751; 69.642857, -0.012213914; 75, -0.0047624032; 80.357143, -0.00041652762; 85.714286, 0.0028162852; 91.071429, 0.00979253; 96.428571, 0.0080315783; 101.78571, 0.0034739882; 107.14286, 0.0021786814; 112.5, 0.0043349925; 117.85714, 0.0053397331; 123.21429, 0.0061087654; 128.57143, 0.0028425693; 133.92857, 0.002129577; 139.28571, 0.0068534431; 144.64286, 0.0071201038; 150, 0.0099290536; 155.35714, 0.0089545127; 160.71429, 0.0079282308; 166.07143, 0.0075533041; 171.42857, 0.01092774; 176.78571, 0.012219652; 182.14286, 0.01013098; 187.5, 0.0096622622];
% Define equations
syms x;
mu = sym('mu'); lambda = sym('lambda'); ke = sym('ke'); ko = sym('ko');
Alpha = @(mu, lambda) 1/(2*mu + lambda);
r = @(x) x;
theta = @(x) x;
% Define equations
eqn1 = x^2*diff(r(x), x, x) + x*diff(r(x), x) - r(x) + Alpha(mu, lambda)^-1*ke^2*x^2*r(x) - Alpha(mu, lambda)^-1*ko^2*x^2*theta(x) == 0;
eqn2 = x^2*diff(theta(x), x, x) + x*diff(theta(x), x) - theta(x) + mu^-1*ko^2*x^2*r(x) + mu^-1*ke^2*x^2*theta(x) == 0;
% Convert symbolic equations to function handles
eqn1_func = matlabFunction(eqn1);
eqn2_func = matlabFunction(eqn2);
% Define the model
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);
% Fit the data with initial guess values
initialGuess = [15, 50, 0.01, 0.01];
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
Error using symengine>@(ke,ko,mu,x)(ke.^2.*x.^3)./mu+(ko.^2.*x.^3)./mu==0.0
Too many input arguments.

Error in solution>@(x,y)[eqn1_func(params(1),params(2),params(3),params(4),x);eqn2_func(params(1),params(2),params(3),params(4),x)] (line 17)
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);

Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.

Error in ode45 (line 104)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);

Error in solution>@(params,x)deval(ode45(@(x,y)[eqn1_func(params(1),params(2),params(3),params(4),x);eqn2_func(params(1),params(2),params(3),params(4),x)],[0.75,187.5],[0.1625,0]),x,1) (line 17)
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);

Error in solution>@(params,x)funr(params,x) (line 20)
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');

Error in lsqcurvefit (line 256)
initVals.F = feval(funfcn_x_xdata{3},xCurrent,XDATA,varargin{:});

Caused by:
Failure in initial objective function evaluation. LSQCURVEFIT cannot continue.
fit2 = lsqcurvefit(@(params, x) funr(params, x), initialGuess, tData(:,1).', tData(:,2).');
% Plot the fitted functions
x_values = linspace(1, 187.5, 1000);
r_fit = funr(fit, x_values);
theta_fit = funr(fit2, x_values);
figure;
plot(x_values, r_fit, 'r', 'LineWidth', 2);
hold on;
scatter(rData(:,1), rData(:,2), 'b');
xlabel('x');
ylabel('r(x)');
title('Fitted r(x) vs. Data');
legend('Fitted r(x)', 'Data');
figure;
plot(x_values, theta_fit, 'g', 'LineWidth', 2);
hold on;
scatter(tData(:,1), tData(:,2), 'b');
xlabel('x');
ylabel('theta(x)');
title('Fitted theta(x) vs. Data');
legend('Fitted theta(x)', 'Data');
Getting folowwing errors:
Error using symengine>@(ke,ko,mu,x)(ke.^2.*x.^3)./mu+(ko.^2.*x.^3)./mu==0.0
Too many input arguments.
Error in test5>@(x,y)[eqn1_func(params(1),params(2),params(3),params(4),x);eqn2_func(params(1),params(2),params(3),params(4),x)] (line 21)
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);
Error in odearguments (line 92)
f0 = ode(t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 107)
odearguments(odeIsFuncHandle,odeTreatAsMFile, solver_name, ode, tspan, y0, options, varargin);
Error in test5>@(params,x)deval(ode45(@(x,y)[eqn1_func(params(1),params(2),params(3),params(4),x);eqn2_func(params(1),params(2),params(3),params(4),x)],[0.75,187.5],[0.1625,0]),x,1) (line 21)
funr = @(params, x) deval(ode45(@(x, y) [eqn1_func(params(1), params(2), params(3), params(4), x); eqn2_func(params(1), params(2), params(3), params(4), x)], [0.75, 187.5], [0.1625, 0]), x, 1);
Error in test5>@(params,x)funr(params,x) (line 25)
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
Error in lsqcurvefit (line 225)
initVals.F = feval(funfcn_x_xdata{3},xCurrent,XDATA,varargin{:});
Error in test5 (line 25)
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
Caused by:
Failure in initial objective function evaluation. LSQCURVEFIT cannot continue.
  4 Kommentare
tuhin
tuhin am 4 Mär. 2024
But eqn 1 and 2 are differential equations. This is the actual equations:
(*Define the equations*)
\[Alpha][\[Mu]_, \[Lambda]_] := 1/(2*\[Mu] + \[Lambda]);
eqns[\[Mu]_, \[Lambda]_, ke_, ko_] := {
x^2*r''[x] + x*r'[x] - r[x] + \[Alpha][\[Mu], \[Lambda]]^-1*ke^2*x^2*r[x] - \[Alpha][\[Mu], \[Lambda]]^-1*ko^2*x^2*\[Theta][x] == 0,
x^2*\[Theta]''[x] + x*\[Theta]'[x] - \[Theta][x] + \[Mu]^-1*ko^2*x^2*r[x] + \[Mu]^-1*ke^2*x^2*\[Theta][x] == 0};
I want to use and solve this two coupled differential eqns (with four boundary conditions) and fit it with the experimental data of r(x) vs x and \theta(x) vs x. For this I want to tune those four parameters mu; lambda; ke; ko. Please let me know if you need more clarifications.
Walter Roberson
Walter Roberson am 4 Mär. 2024
Your latex doesn't make sense.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Torsten
Torsten am 4 Mär. 2024
Bearbeitet: Torsten am 5 Mär. 2024
I assumed you start integration at x = 5.3571429.
You will need to specify dr/dx and dtheta/dx in the y0-vector below.
rData = [5.3571429, 0.096854535; 10.714286, 0.055104186; 16.071429, 0.042811499; 21.428571, 0.024825886; 26.785714, 0.023279183; 32.142857, 0.016328542; 37.5, 0.0092185037; 42.857143, 0.0075624777; 48.214286, 0.0023514323; 53.571429, 0.001637045; 58.928571, -0.0024887011; 64.285714, -0.0034741333; 69.642857, -0.0056340032; 75, -0.0040906991; 80.357143, -0.0039738424; 85.714286, -0.0044593789; 91.071429, -0.0054884315; 96.428571, -0.0037277341; 101.78571, -0.0041691748; 107.14286, -0.0039292558; 112.5, -0.0037408923; 117.85714, -0.0040700255; 123.21429, -0.0028904555; 128.57143, -0.0022557232; 133.92857, -0.0020756487; 139.28571, -0.0020739949; 144.64286, -0.0015149035; 150, -0.0019796368; 155.35714, -0.00068430865; 160.71429, -0.00060721168; 166.07143, -0.00055972397; 171.42857, -0.0011788755; 176.78571, -0.00090675531; 182.14286, -0.00060012026; 187.5, 7.6071311e-6];
tData = [5.3571429, 0.081473653; 10.714286, -0.0076210718; 16.071429, -0.038565046; 21.428571, -0.014000405; 26.785714, -0.042161254; 32.142857, -0.071404281; 37.5, -0.066992712; 42.857143, -0.031355057; 48.214286, -0.02043848; 53.571429, -0.025259291; 58.928571, -0.019615094; 64.285714, -0.015185751; 69.642857, -0.012213914; 75, -0.0047624032; 80.357143, -0.00041652762; 85.714286, 0.0028162852; 91.071429, 0.00979253; 96.428571, 0.0080315783; 101.78571, 0.0034739882; 107.14286, 0.0021786814; 112.5, 0.0043349925; 117.85714, 0.0053397331; 123.21429, 0.0061087654; 128.57143, 0.0028425693; 133.92857, 0.002129577; 139.28571, 0.0068534431; 144.64286, 0.0071201038; 150, 0.0099290536; 155.35714, 0.0089545127; 160.71429, 0.0079282308; 166.07143, 0.0075533041; 171.42857, 0.01092774; 176.78571, 0.012219652; 182.14286, 0.01013098; 187.5, 0.0096622622];
initialGuess = [15, 50, 0.01, 0.01,...
rData(1,2),(rData(2,2)-rData(1,2))/(rData(2,1)-rData(1,1)),...
tData(1,2),(tData(2,2)-tData(1,2))/(tData(2,1)-tData(1,1))];
options = optimset('MaxFunEvals',10000,'MaxIter',10000);
fit = lsqnonlin( @(params)fitfun(params,rData,tData), initialGuess,[0 0 0 0 -Inf -Inf -Inf -Inf],[],options)
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
fit = 1×8
1.0e+03 * 2.6450 0.0499 0.0000 0.0000 0.0001 -0.0000 0.0000 -0.0000
norm(fitfun(initialGuess,rData,tData))
ans = 3.4186
norm(fitfun(fit,rData,tData))
ans = 0.1558
[T,Y] = odefun(fit,rData,tData);
figure(1)
hold on
plot(rData(:,1),rData(:,2),'o')
plot(T,Y(:,1))
hold off
figure(2)
hold on
plot(tData(:,1),tData(:,2),'o')
plot(T,Y(:,3))
hold off
function res = fitfun(params,rData,tData)
[T,Y] = odefun(params,rData,tData);
res = [rData(:,2)-Y(:,1);tData(:,2)-Y(:,3)];
end
function [T,Y] = odefun(params,rData,tData)
mu = params(1);
lambda = params(2);
ke = params(3);
ko = params(4);
fun = @(x,y)[y(2);(-x*y(2)+y(1)-ke^2*x^2/(2*mu+lambda)*y(1)+ko^2*x^2*y(3)/(2*mu+lambda))/x^2;...
y(4);(-x*y(4)+y(3)-ko^2/mu*x^2*y(1)-ke^2/mu*x^2*y(3))/x^2];
tspan = rData(:,1);
y0 = [params(5);params(6);params(7);params(8)]; %[r,dr/dx,theta,dtheta/dx]
[T,Y] = ode45(fun,tspan,y0);
end
  9 Kommentare
tuhin
tuhin am 13 Mär. 2024
Till now, I was varying those four parameters of mu, lamda, ke and ko for these two fittings (i.e. r(x) vs x and t(x) vs x). That means I am getting Ke_r, Ko_r, mu_r and lamda_r for r(x) vs x. For, t(x) vs x I am getting ke_t, ko_t, mu_t and lamda_t. Now I want the ke_r should be same as ke_t and ko_r should be same as ko_t. For that I want to change the script.
Torsten
Torsten am 13 Mär. 2024
Bearbeitet: Torsten am 13 Mär. 2024
You have one fit in your code above from which you get Ke, Ko, mu and lamda by solving 4 differential equations for r, r', t and t' simultaneously. I don't know what you mean by
Till now, I was varying those four parameters of mu, lamda, ke and ko for these two fittings (i.e. r(x) vs x and t(x) vs x). That means I am getting Ke_r, Ko_r, mu_r and lamda_r for r(x) vs x. For, t(x) vs x I am getting ke_t, ko_t, mu_t and lamda_t.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by