How to calculate the difference error between Runge-Kutta Order 4 Method and euler method?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
cindyawati cindyawati
am 4 Mär. 2024
Kommentiert: Sam Chak
am 4 Mär. 2024
I want to calculate the difference error between Runge-Kutta order 4 method and Euler method. Because I know the Runge-Kutta order 4 method more than precision depend on euler. So, Can I calculate the difference error? This is my Runge-Kutta code. Thanks
tstart = 0;
tend = 180;
dt = 0.01;
T = (tstart:dt:tend).';
Y0 = [10 0 0 0 0 0 0 0];
f = @myode;
Y = fRK4(f,T,Y0);
M1 = Y(:,1);
M2 = Y(:,2);
M3 = Y(:,3);
M4 = Y(:,4);
M5 = Y(:,5);
M6 = Y(:,6);
O = Y(:,7);
P = Y(:,8);
figure
%subplot(3,1,1)
%hold on
plot(T,M1,'r','Linewidth',2)
xlabel('Times (days)')
ylabel('M1 (gr/ml)')
figure
%subplot(3,1,2)
%hold on
plot(T,M2,'b','Linewidth',2)
xlabel('Times (days)')
ylabel('M2 (gr/ml)')
figure
%subplot(3,1,3)
%hold on
plot(T,M3,'g','Linewidth',2)
xlabel('Times (days)')
ylabel('M3 (gr/ml)')
figure
%subplot(3,1,3)
%hold on
plot(T,M4,'b','Linewidth',5)
xlabel('Times (days)')
ylabel('M4 (gr/ml)')
figure
%subplot(3,1,3)
%hold on
plot(T,M5,'r','Linewidth',5)
xlabel('Times (days)')
ylabel('M5 (gr/ml)')
figure
%subplot(3,1,3)
%hold on
plot(T,M6,'g','Linewidth',5)
xlabel('times (days)')
ylabel('M6 (gr/ml)')
figure
%subplot(2,1,1)
%hold on
plot(T,O,'k','Linewidth',2)
xlabel('Times (days)')
ylabel('O (gr/ml)')
figure
%subplot(2,1,2)
%hold on
plot(T,P,'m','Linewidth',2)
xlabel('Times (days)')
ylabel('P (gr/ml)')
function Y = fRK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for j = 2:N
t = T(j-1);
y = Y(j-1,:);
h = T(j) - T(j-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(j,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
function CM1 = myode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
M4 = MM(4);
M5 = MM(5);
M6 = MM(6);
O = MM(7);
P = MM(8);
delta=50;
gamma=75;
K1=10^-4;
K2=5*10^-4;
K3=10^-3;
K4=5*10^-3;
K5=10^-2;
K6=5*10^-2;
Ko=0.1;
n=6;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_4=10^-3;
mu_5=10^-3;
mu_6=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
sumter=K2*M2+K3*M3+K4*M4+K5*M5;
CM1= zeros(1,8);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*sumter-((Oa-n)*K6*M1*M6)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(K4*M1*M4)-(mu_4*M4);
CM1(5) = (K4*M1*M4)-(K5*M1*M5)-(mu_5*M5);
CM1(6) = (K5*M1*M5)-(K6*M1*M6)-(mu_6*M6);
CM1(7) = (K6*M1*M6)-(Ko*M1*O)-(mu_o*O);
CM1(8) = (Ko*M1*O)-(mu_p*P);
end
0 Kommentare
Akzeptierte Antwort
Aquatris
am 4 Mär. 2024
Bearbeitet: Aquatris
am 4 Mär. 2024
You can add a 'eul' function for euler integration and take the norm of the difference between the resulting outputs.
clear all ,clc
tstart = 0;
tend = 180;
dt = 0.001;
T = (tstart:dt:tend).';
Y0 = [10 0 0 0 0 0 0 0];
f = @myode;
Y = fRK4(f,T,Y0); % RK4 integration
Y2 = eul(f,T,Y0); % euler integration
norm((Y-Y2)./max(Y))
%% here is the euler integration
function Y = eul(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for j = 2:N
t = T(j-1);
y = Y(j-1,:);
h = T(j) - T(j-1);
Y(j,:) = y + f(t,y)*h; % y(n+1) = y(n) + dy*dt
end
end
% here is your RK4
function Y = fRK4(f,T,Y0)
N = numel(T);
n = numel(Y0);
Y = zeros(N,n);
Y(1,:) = Y0;
for j = 2:N
t = T(j-1);
y = Y(j-1,:);
h = T(j) - T(j-1);
k0 = f(t,y);
k1 = f(t+0.5*h,y+k0*0.5*h);
k2 = f(t+0.5*h,y+k1*0.5*h);
k3 = f(t+h,y+k2*h);
Y(j,:) = y + h/6*(k0+2*k1+2*k2+k3);
end
end
function CM1 = myode (~,MM)
M1 = MM(1);
M2 = MM(2);
M3 = MM(3);
M4 = MM(4);
M5 = MM(5);
M6 = MM(6);
O = MM(7);
P = MM(8);
delta=50;
gamma=75;
K1=10^-4;
K2=5*10^-4;
K3=10^-3;
K4=5*10^-3;
K5=10^-2;
K6=5*10^-2;
Ko=0.1;
n=6;
Oa=10;
Pa=100;
mu_1=10^-3;
mu_2=10^-3;
mu_3=10^-3;
mu_4=10^-3;
mu_5=10^-3;
mu_6=10^-3;
mu_o=10^-4;
mu_p= 10^-5;
sumter=K2*M2+K3*M3+K4*M4+K5*M5;
CM1= zeros(1,8);
CM1(1) = (delta*M1*(1-(M1/gamma))-2*K1*M1*M1-M1*sumter-((Oa-n)*K6*M1*M6)-((Pa-Oa)*Ko*M1*O)-(mu_1*M1));
CM1(2) = (K1*M1*M1)-(K2*M1*M2)-(mu_2*M2);
CM1(3) = (K2*M1*M2)-(K3*M1*M3)-(mu_3*M3);
CM1(4) = (K3*M1*M3)-(K4*M1*M4)-(mu_4*M4);
CM1(5) = (K4*M1*M4)-(K5*M1*M5)-(mu_5*M5);
CM1(6) = (K5*M1*M5)-(K6*M1*M6)-(mu_6*M6);
CM1(7) = (K6*M1*M6)-(Ko*M1*O)-(mu_o*O);
CM1(8) = (Ko*M1*O)-(mu_p*P);
end
5 Kommentare
Sam Chak
am 4 Mär. 2024
If the integration step size is chosen to be extremely small, the error within the finite tspan could become negligible. In this case, the computed error is 10 times smaller. Based on this finding, what conclusions can you draw?
tstart = 0;
tend = 180;
f = @myode;
Y0 = [10 0 0 0 0 0 0 0];
dt = 0.00001;
T = (tstart:dt:tend).';
Y = fRK4(f,T,Y0); % RK4 integration
Y2 = eul(f,T,Y0); % euler integration
error = norm((Y-Y2)./max(Y))
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Analog Filters finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!







