How to simplify infinite double matrix summation in Matlab.
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hilal Ahmad Bhat
am 2 Mär. 2024
Bearbeitet: Torsten
am 5 Mär. 2024
I need to calculate the following sum:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1633396/image.png)
I used the following code:
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1];
syms k l t
f = ((-A).^k./factorial(k)).*((factorial(k+l).*(-R).^l)/gamma((2-beta).*l...
+ 2.*k + 2)).*((t.^((2-beta).*l+2.*k+1))/factorial(l));
F = vpasum(vpasum(f,k,0,inf),l,0,inf);
G = subs(F,t,1)
This yields G as a symbolic sum but I need it as numeric sum. I tried it using symsum function but that too yields a symbolic answer. Using, subs function for t=1 won't change it into a numeric value. Any help would be highly appriciated.
5 Kommentare
Walter Roberson
am 2 Mär. 2024
(-R).^l
I suspect that is
(-R)^l
and
(-A).^k
I suspect that is
(-A)^k
Akzeptierte Antwort
Walter Roberson
am 3 Mär. 2024
Verschoben: Walter Roberson
am 3 Mär. 2024
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1];
syms k l t
f = ((-A)^k./factorial(k)).*((factorial(k+l).*(-R)^l)/gamma((2-beta).*l...
+ 2.*k + 2)).*((t.^((2-beta).*l+2.*k+1))/factorial(l));
F = symsum(symsum(f,k,0,inf),l,0,inf);
G = subs(F,t,1)
vpa(G)
6 Kommentare
Torsten
am 5 Mär. 2024
Bearbeitet: Torsten
am 5 Mär. 2024
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1]; t = 1;
mat = zeros(2);
mat_inner = Inf(2);
tol = 1e-6;
s1 = 0;
while norm(mat_inner,'fro') > tol
mat_inner = zeros(2);
for s2 = 0:s1
mat_inner = mat_inner + f(s1-s2,s2,beta,A,R,t);
end
mat = mat + mat_inner;
s1 = s1 + 1;
end
s1
format long
mat
function mat = f(k,l,beta,A,R,t)
mat = (-1)^(k+l)*A^k/factorial(k)*R^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end
Weitere Antworten (1)
Torsten
am 2 Mär. 2024
Bearbeitet: Torsten
am 2 Mär. 2024
Are you sure that the matrix potentials for A and R are meant elementwise ?
beta = 1.5; A = [1 0;0 2]; R = [0 3; 1 1]; t = 1;
N = 50;
M = N;
mat = zeros(2);
for s1 = 0:N
for s2 = 0:M
mat = mat + f(s1,s2,beta,A,R,t);
end
end
mat
function mat = f(k,l,beta,A,R,t)
mat = (-A).^k/factorial(k).*(-R).^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end
3 Kommentare
Torsten
am 3 Mär. 2024
Bearbeitet: Torsten
am 3 Mär. 2024
I doubt you will find an analytical expression for your double sum - that's what summing up to infinity would mean. Thus you will have to compute the sum numerically.
Infinite sums are numerically evaluated by building finite sums up to an index N until the result changes only neclectably if N is increased.
That's what I did.
If you meant usual matrix multiplication, replace
function mat = f(k,l,beta,A,R,t)
mat = (-A).^k/factorial(k).*(-R).^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end
by
function mat = f(k,l,beta,A,R,t)
mat = (-A)^k/factorial(k)*(-R)^l/factorial(l)*factorial(k+l)...
*t^((2-beta)*l+2*k+1)/gamma((2-beta)*l+2*k+2);
end
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!