I am trying to perform the second derivative test of this function I came up with
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Oliver Ries
am 29 Feb. 2024
Kommentiert: Oliver Ries
am 29 Feb. 2024
Trying to do the second derivative test to find the minimum W, but none of this code is working. How do I get the critical points and then the second derivative to test if those points are a minimum. Also how do I go back and plug them into the equation for R and W when I set them up as syms.
E = 9.9*10^6;
p = .098;
F = 1500;
L = 20;
g = 32.2*12;
I = (F*L^2)/(E*pi^2);
syms R1 t
x = I == (pi/4)*(((R1+t)^4)-(R1^4));
R = solve(x, R1, 'MaxDegree', 4);
W0 = 2.*pi.*p.*L.*g.*t.*R;
disp(W0);
W = inline(W0,'t');
disp(W);
dW = diff(W(t),t)==0;
disp(dW);
cp = vpasolve(dW,t);
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 29 Feb. 2024
Bearbeitet: Walter Roberson
am 29 Feb. 2024
Q = @(v) sym(v);
Pi = Q(pi);
E = Q(9.9)*10^6;
p = Q(.098);
F = Q(1500);
L = Q(20);
g = Q(32.2)*12;
I = (F*L^2)/(E*Pi^2);
syms R1 t
x = I == (Pi/4)*(((R1+t)^4)-(R1^4));
R = solve(x, R1, 'MaxDegree', 4);
W0 = 2.*Pi.*p.*L.*g.*t.*R;
disp(W0);
dW = diff(W0,t)==0;
disp(dW);
cp = arrayfun(@(F) solve(F,t), dW(1), 'uniform', 0)
cp{1}
vpa(cp{1})
Hmmm... those look suspiciously similar...
Note that the general solution involves
cp = arrayfun(@(F) solve(F,t), dW, 'uniform', 0)
I had to restrict it to dW(1) to fit within the time limits here.
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!