Can this code be rearranged to run successfully

1 Ansicht (letzte 30 Tage)
MINATI PATRA
MINATI PATRA am 27 Feb. 2024
Beantwortet: Jaimin am 9 Aug. 2024
% I got the following code from: https://in.mathworks.com/help/deeplearning/ug/solve-partial-differential-equations-using-deep-learning.html
% want to rearrange and run
numBoundaryConditionPoints = [25 25];
x0BC1 = -1*ones(1,numBoundaryConditionPoints(1)); x0BC2 = ones(1,numBoundaryConditionPoints(2));
t0BC1 = linspace(0,1,numBoundaryConditionPoints(1)); t0BC2 = linspace(0,1,numBoundaryConditionPoints(2));
u0BC1 = zeros(1,numBoundaryConditionPoints(1)); u0BC2 = zeros(1,numBoundaryConditionPoints(2));
numInitialConditionPoints = 50;
x0IC = linspace(-1,1,numInitialConditionPoints); t0IC = zeros(1,numInitialConditionPoints);
u0IC = - sin(pi*x0IC);
X0 = [x0IC x0BC1 x0BC2]; T0 = [t0IC t0BC1 t0BC2]; U0 = [u0IC u0BC1 u0BC2];
numInternalCollocationPoints = 10000;
pointSet = sobolset(2); points = net(pointSet,numInternalCollocationPoints);
dataX = 2*points(:,1)-1; dataT = points(:,2); ds = arrayDatastore([dataX dataT]);
numLayers = 9; numNeurons = 20;
parameters = struct;
sz = [numNeurons 2];
parameters.fc1.Weights = initializeHe(sz,2);
'initializeHe' is used in Solve Partial Differential Equations Using Deep Learning.
parameters.fc1.Bias = initializeZeros([numNeurons 1]);
for layerNumber=2:numLayers-1
name = "fc"+layerNumber;
sz = [numNeurons numNeurons];
numIn = numNeurons;
parameters.(name).Weights = initializeHe(sz,numIn);
parameters.(name).Bias = initializeZeros([numNeurons 1]);
end
sz = [1 numNeurons]; numIn = numNeurons;
parameters.("fc" + numLayers).Weights = initializeHe(sz,numIn);
parameters.("fc" + numLayers).Bias = initializeZeros([1 1]);
parameters
parameters.fc1
numEpochs = 3000; miniBatchSize = 1000; executionEnvironment = "auto";
initialLearnRate = 0.01; decayRate = 0.005;
mbq = minibatchqueue(ds, MiniBatchSize=miniBatchSize, MiniBatchFormat="BC", OutputEnvironment=executionEnvironment);
X0 = dlarray(X0,"CB"); T0 = dlarray(T0,"CB"); U0 = dlarray(U0);
if (executionEnvironment == "auto" && canUseGPU) || (executionEnvironment == "gpu")
X0 = gpuArray(X0); T0 = gpuArray(T0); U0 = gpuArray(U0);
end
averageGrad = []; averageSqGrad = [];
accfun = dlaccelerate(@modelLoss);
figure(1), C = colororder; lineLoss = animatedline(Color=C(2,:));
ylim([0 inf]),xlabel("Iteration"),ylabel("Loss"),grid on
start = tic; iteration = 0;
for epoch = 1:numEpochs
reset(mbq);
while hasdata(mbq)
iteration = iteration + 1;
XT = next(mbq); X = XT(1,:); T = XT(2,:);
% Evaluate the model loss and gradients using dlfeval and the modelLoss function.
[loss,gradients] = dlfeval(accfun,parameters,X,T,X0,T0,U0);
% Update learning rate.
learningRate = initialLearnRate / (1+decayRate*iteration);
% Update the network parameters using the adamupdate function.
[parameters,averageGrad,averageSqGrad] = adamupdate(parameters,gradients,averageGrad, ...
averageSqGrad,iteration,learningRate);
end
% Plot training progress.
loss = double(gather(extractdata(loss)));
addpoints(lineLoss,iteration, loss);
D = duration(0,0,toc(start),Format="hh:mm:ss");
title("Epoch: " + epoch + ", Elapsed: " + string(D) + ", Loss: " + loss)
drawnow
end
accfun
tTest = [0.25 0.5 0.75 1];
numPredictions = 1001;
XTest = linspace(-1,1,numPredictions);
figure
for i=1:numel(tTest)
t = tTest(i);
TTest = t*ones(1,numPredictions);
% Make predictions.
XTest = dlarray(XTest,"CB");
TTest = dlarray(TTest,"CB");
UPred = model(parameters,XTest,TTest);
% Calculate true values.
UTest = solveBurgers(extractdata(XTest),t,0.01/pi);
% Calculate error.
err = norm(extractdata(UPred) - UTest) / norm(UTest);
% Plot predictions.
subplot(2,2,i)
plot(XTest,extractdata(UPred),"-",LineWidth=2);
ylim([-1.1, 1.1])
% Plot true values.
hold on
plot(XTest, UTest, "--",LineWidth=2)
hold off
title("t = " + t + ", Error = " + gather(err));
end
subplot(2,2,2)
legend("Predicted","True")
%%% Solve Burger's Equation Function
function U = solveBurgers(X,t,nu)
% Define functions.
f = @(y) exp(-cos(pi*y)/(2*pi*nu));
g = @(y) exp(-(y.^2)/(4*nu*t));
% Initialize solutions.
U = zeros(size(X));
% Loop over x values.
for i = 1:numel(X)
x = X(i);
% Calculate the solutions using the integral function. The boundary
% conditions in x = -1 and x = 1 are known, so leave 0 as they are
% given by initialization of U.
if abs(x) ~= 1
fun = @(eta) sin(pi*(x-eta)) .* f(x-eta) .* g(eta);
uxt = -integral(fun,-inf,inf);
fun = @(eta) f(x-eta) .* g(eta);
U(i) = uxt / integral(fun,-inf,inf);
end
end
end
%%% Model Loss Function
function [loss,gradients] = modelLoss(parameters,X,T,X0,T0,U0)
% Make predictions with the initial conditions.
U = model(parameters,X,T);
% Calculate derivatives with respect to X and T.
gradientsU = dlgradient(sum(U,"all"),{X,T},EnableHigherDerivatives=true);
Ux = gradientsU{1};
Ut = gradientsU{2};
% Calculate second-order derivatives with respect to X.
Uxx = dlgradient(sum(Ux,"all"),X,EnableHigherDerivatives=true);
% Calculate lossF. Enforce Burger's equation.
f = Ut + U.*Ux - (0.01./pi).*Uxx;
zeroTarget = zeros(size(f), "like", f);
lossF = mse(f, zeroTarget);
% Calculate lossU. Enforce initial and boundary conditions.
U0Pred = model(parameters,X0,T0);
lossU = mse(U0Pred, U0);
% Combine losses.
loss = lossF + lossU;
% Calculate gradients with respect to the learnable parameters.
gradients = dlgradient(loss,parameters);
end
%%% Model Function
function U = model(parameters,X,T)
XT = [X;T];
numLayers = numel(fieldnames(parameters));
% First fully connect operation.
weights = parameters.fc1.Weights;
bias = parameters.fc1.Bias;
U = fullyconnect(XT,weights,bias);
% tanh and fully connect operations for remaining layers.
for i=2:numLayers
name = "fc" + i;
U = tanh(U);
weights = parameters.(name).Weights;
bias = parameters.(name).Bias;
U = fullyconnect(U, weights, bias);
end
end

Antworten (1)

Jaimin
Jaimin am 9 Aug. 2024
Based on the issue description, it appears that the provided example in the documentation is not functioning as intended.
Instead of rearranging this code, you can utilize the complete code from the example. Here are the steps you can follow:
Step 1:
Step 2:
Click on "Copy command" (located in the top right corner) highlighted in a red box in above image.
Step 3:
Open MATLAB and paste this command in “Command Window”. After that you can execute the code.
I hope this will help resolve the issue.

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by