Plot the first-order autocorrelation functions for the following light sources: perfect monochromatic source, a thermal lamp((Lc=1 μm, a led =100 μm), lasersLc=1 m and 1 km

4 Ansichten (letzte 30 Tage)
clc;
close all;
clear all;
% Parameters
tau = linspace(-10, 10, 1000); % Time delay (in arbitrary units)
omega_0 = 2*pi; % Angular frequency for monochromatic light
delta_omega_LED = 2*pi*1e6; % Linewidth for LED (assumed)
tau_c_thermal = 0.5; % Coherence time for thermal lamp (assumed)
% Autocorrelation functions
g_monochromatic = exp(1i*omega_0*tau);
g_thermal = exp(-abs(tau)/tau_c_thermal);
g_LED = exp(-abs(delta_omega_LED*tau/2)) .* exp(1i*omega_0*tau);
% Plotting
figure;
subplot(2,2,1);
plot(tau, real(g_monochromatic), 'b', 'LineWidth', 1.5);
title('Perfect Monochromatic Source');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,2);
plot(tau, real(g_thermal), 'r', 'LineWidth', 1.5);
title('Thermal Lamp');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,3);
plot(tau, real(g_LED), 'g', 'LineWidth', 1.5);
title('Light Emitting Diode (LED)');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,4);
plot(tau, abs(g_LED), 'm', 'LineWidth', 1.5);
title('Laser Source (Coherence Length 1 km)');
xlabel('\tau');
ylabel('|g^{(1)}(\tau)|');
sgtitle('First-Order Autocorrelation Functions for Different Light Sources');
I was using this code but not getting the correct graph.Using these formulae

Antworten (1)

William Rose
William Rose am 18 Feb. 2024
Bearbeitet: William Rose am 18 Feb. 2024
[Edit: fix spelling errors.]
You can format your code as code, by highlighting your code, then click the "Code" icon above. Then click the green Run arrow to run it.
clear;
% Parameters
tau = linspace(-10, 10, 1000); % Time delay (in arbitrary units)
omega_0 = 2*pi; % Angular frequency for monochromatic light
delta_omega_LED = 2*pi*1e6; % Linewidth for LED (assumed)
tau_c_thermal = 0.5; % Coherence time for thermal lamp (assumed)
% Autocorrelation functions
g_monochromatic = exp(1i*omega_0*tau);
g_thermal = exp(-abs(tau)/tau_c_thermal);
g_LED = exp(-abs(delta_omega_LED*tau/2)) .* exp(1i*omega_0*tau);
% Plotting
figure;
subplot(2,2,1);
plot(tau, real(g_monochromatic), 'b', 'LineWidth', 1.5);
title('Perfect Monochromatic Source');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,2);
plot(tau, real(g_thermal), 'r', 'LineWidth', 1.5);
title('Thermal Lamp');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,3);
plot(tau, real(g_LED), 'g', 'LineWidth', 1.5);
title('Light Emitting Diode (LED)');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,4);
plot(tau, abs(g_LED), 'm', 'LineWidth', 1.5);
title('Laser Source (Coherence Length 1 km)');
xlabel('\tau');
ylabel('|g^{(1)}(\tau)|');
sgtitle('First-Order Autocorrelation Functions for Different Light Sources');
The two formulas in the jpeg which you attached say that
  • the autocorrelation for monchromatic light is a cosine wave, and
  • the autocorrelation for a source with non-zero linewidth is a cosine wave with a Gaussian envelope.
The code does not implement the formula for non-zero linewith correctly, because it does not square the term . But that is not the reason for the zero autocorrealation in the lower panels. The reason the autocorrelation is zero in the lower panels is that delta_omega_LED is very large compared to the light frequency. In your code , the light has frequency 1 cycle per unit time. The linewidth is 2*pi*10^6 radians per unit time. Therefor, by the time tau=0.02 (the tau value closest to tau=0), , and exp(-10^4)=0, so g_LED=0, for the range of tau which you plot (except tau=0, which should=1).
Let's re-run your code, correcting the squaring issue, and changing delta_omega_LED to 0.5 instead of 2*pi*1e6.
% Parameters
tau = linspace(-10, 10, 1000); % Time delay (in arbitrary units)
omega_0 = 2*pi; % Angular frequency for monochromatic light
delta_omega_LED = 0.5; % Linewidth for LED (assumed)
tau_c_thermal = 0.5; % Coherence time for thermal lamp (assumed)
% Autocorrelation functions
g_monochromatic = exp(1i*omega_0*tau);
g_thermal = exp(-abs(tau)/tau_c_thermal);
g_LED = exp(-(delta_omega_LED*tau/2).^2) .* exp(1i*omega_0*tau);
% Plotting
figure;
subplot(2,2,1);
plot(tau, real(g_monochromatic), 'b', 'LineWidth', 1.5);
title('Perfect Monochromatic Source');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,2);
plot(tau, real(g_thermal), 'r', 'LineWidth', 1.5);
title('Thermal Lamp');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,3);
plot(tau, real(g_LED), 'g', 'LineWidth', 1.5);
title('Light Emitting Diode (LED)');
xlabel('\tau');
ylabel('Re[g^{(1)}(\tau)]');
subplot(2,2,4);
plot(tau, abs(g_LED), 'm', 'LineWidth', 1.5);
title('Laser Source (Coherence Length 1 km)');
xlabel('\tau');
ylabel('|g^{(1)}(\tau)|');
sgtitle('First-Order Autocorrelation Functions for Different Light Sources');
Therefore I think you should re-evaluate the value for delta_omega_LED. In your code comments, you say the optical frequency is in arbitrary units. But the plot title says Coherence Length=1 km, which is not an arbitrary unit. I don't know if this is relevant.
Thank you for introducing me to "sgtitle()". I didn't know about that command.
  3 Kommentare
OMEIR HUSSAIN
OMEIR HUSSAIN am 18 Feb. 2024
Thank you but they should be 5 graphs .Above you for the laser you have titled both the graphs with the same L value that is 1km.I think the graph for led is missing thank you.
William Rose
William Rose am 19 Feb. 2024
@OMEIR HUSSAIN, your script makes four plots. I shortened the titles since they were too long to fit. YOu plotted the real part at (2,2,3) and the magnitude at (2,2,4). I did not change that.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by