How to plot the error of two numerical methods on the same graph?
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Omar B.
 am 16 Feb. 2024
  
    
    
    
    
    Kommentiert: Star Strider
      
      
 am 16 Feb. 2024
            I'm trying to plot the error of two methods, but I got the following error
Index exceeds the number of array elements (3)
Also, How can I plot the error of the two methods on the same graph?
function xnew = newtonmethod(f,df,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
%% Newton code
disp('No Itr     Solution    Error  ')
Error=[];
for i=1:n
    xnew=x0-(f(x0)/df(x0));
    err=abs(xnew-x0);
    fprintf('%3i %11.4f  %11.4f %11.4f\n',i,x0,err);
    if (err<tol)
        break
    end
    x0=xnew;
    Error=[Error;err];
end
%% Graph
plot(1:i,Error(1:i),'r-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %% 2nd method
 function xnewh = Hmethod(f,df,ddf,x0,tol,n)
%% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
ddf=@(x) -4.5*sin(x);
x0=1;
tol=0.0001;
n=50;
%% code
disp('No Itr     Solution    Errorh')
Errorh=[];
for i=1:n
    xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
    errh=abs(xnewh-x0);
    fprintf('%3i %11.4f  %11.4f\n',i,x0,errh);
    if (errh<tol)
        break
    end
    x0=xnewh;
    Errorh=[Errorh;errh];
end
%% Graph
plot(1:i,Errorh(1:i),'b-','Linewidth',02)
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
%    
0 Kommentare
Akzeptierte Antwort
  Star Strider
      
      
 am 16 Feb. 2024
        I cannot run your code because I do not have arguments for the functions.  (I tweaked them to make them a bit more efficient.)  
Plotting both results in the same axes is relativbely straightforward.  
Example (using different functions) — 
figure
plot1
hold on
plot2
hold off
grid
function plot1
plot((0:0.1:5), sin((0:0.1:5)*pi))
end
function plot2
plot((0:0.1:5), cos((0:0.1:5)*pi))
end
% 
% 
% function xnew = newtonmethod(f,df,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% x0=1;
% tol=0.0001;
% n=50;
% %% Newton code
% disp('No Itr     Solution    Error  ')
% Error=zeros(1,n);
% for i=1:n
%     xnew=x0-(f(x0)/df(x0));
%     err=abs(xnew-x0);
%     fprintf('%3i %11.4f  %11.4f %11.4f\n',i,x0,err);
%     if (err<tol)
%         break
%     end
%     x0=xnew;
%     Error(i)=err;
% end
% %% Graph
%
% 
% plot(1:n,Error,'r-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
% end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  %% 2nd method
%  function xnewh = Hmethod(f,df,ddf,x0,tol,n,Axh)
% %% Given data
% f=@(x) 8-4.5*(x-sin(x));
% df=@(x) -4.5*(1-cos(x));
% ddf=@(x) -4.5*sin(x);
% 
% x0=1;
% tol=0.0001;
% n=50;
% %% code
% disp('No Itr     Solution    Errorh')
% 
% Errorh=zeros(1,n);
% for i=1:n
% 
%     xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
%     errh=abs(xnewh-x0);
% 
%     fprintf('%3i %11.4f  %11.4f\n',i,x0,errh);
%     if (errh<tol)
%         break
%     end
% 
%     x0=xnewh;
%     Errorh(i)=errh;
% end
% %% Graph
% 
% 
% plot(1:n,Errorh,'b-','Linewidth',02)
% xlabel('No of Iteration','Interpreter','latex','FontSize',12)
% ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
% title('Error Decay','Interpreter','latex','FontSize',12)
%  end
% %    
.
6 Kommentare
Weitere Antworten (1)
  Torsten
      
      
 am 16 Feb. 2024
        
      Bearbeitet: Torsten
      
      
 am 16 Feb. 2024
  
      %% Given data
f=@(x) 8-4.5*(x-sin(x));
df=@(x) -4.5*(1-cos(x));
x0=1;
tol=0.0001;
n=50;
[x_newton,i_newton,Error_newton]=newtonmethod(f,df,x0,tol,n);
ddf=@(x) -4.5*sin(x);
[x_Hmethod,i_Hmethod,Error_Hmethod]=Hmethod(f,df,ddf,x0,tol,n);
%Plot results
hold on
plot(1:i_newton,Error_newton,'r-','Linewidth',02)
plot(1:i_Hmethod,Error_Hmethod,'b-','Linewidth',02)
hold off
xlabel('No of Iteration','Interpreter','latex','FontSize',12)
ylabel('Error=$|x_{n+1}-n_n|$','Interpreter','latex','FontSize',12)
title('Error Decay','Interpreter','latex','FontSize',12)
function [xnew,i,Error] = newtonmethod(f,df,x0,tol,n)
  %% Newton code
  disp('No Itr     Solution    Error  ')
  Error=[];
  for i=1:n
    xnew=x0-(f(x0)/df(x0));
    err=abs(xnew-x0);
    Error=[Error;err];
    fprintf('%3i %11.4f %11.4f\n',i,x0,err);
    if (err<tol)
        break
    end
    x0=xnew;
  end
end
%% 2nd method
function [xnewh,i,Errorh] = Hmethod(f,df,ddf,x0,tol,n)
  %% code
  disp('No Itr     Solution    Errorh')
  Errorh=[];
  for i=1:n   
    xnewh=x0- (2*f(x0).*df(x0)) ./ (2*(df(x0)).^2-ddf(x0).*f(x0));
    errh=abs(xnewh-x0);
    Errorh=[Errorh;errh];
    fprintf('%3i %11.4f  %11.4f\n',i,x0,errh);
    if (errh<tol)
        break
    end
    x0=xnewh;
  end
end
Siehe auch
Kategorien
				Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






