Layers argument must be an array of layers or a layer graph.
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
XTrain = xlsread('R1_all_data.xlsx',1,'A1:G3788')';
YTrain = xlsread('R1_all_data.xlsx',1, 'H1:H3788')';
XTest = xlsread('R2_all_data.xlsx',1, 'A1:G3788')';
YTest = xlsread('R2_all_data.xlsx',1, 'H1:H3788')';
inputSize = 3788;
numResponses = 1;
numHiddenUnits = 5000;
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer };
opts = trainingOptions('adam', 'MaxEpochs', 1000, 'GradientThreshold', 0.01, 'InitialLearnRate',0.0001);
net = trainNetwork(XTrain,YTrain,layers,opts);
YPred1=predict(net,XTest)
1 Kommentar
Antworten (1)
Krishna
am 10 Feb. 2024
Hello PRAMOD,
It appears that the issue you're encountering stems from an improper initialization of the layers object. The mistake was made by using curly braces {} to initialize:
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer }
Instead, you should initialize using square brackets [] like this:
layers = [ sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer ]
I hope this correction resolves your problem.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!