Using parfor to evaluate integrations
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Luqman Saleem
am 2 Feb. 2024
Kommentiert: Mike Croucher
am 5 Feb. 2024
Probably a stupid question.
I want to integrate a function f(x,y). Can I use parfor() as shown below to compute the sum? I am confused because I consider that each loop over one "ix" value in the following parfor() is run independently from other "ix" values, which means that I must obtain a different "sum_f" for each "ix" value. Right?
clear; clc;
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
f = @(x,y) x^2+y^2;
sum_f = 0;
parfor ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I = sum(sum_f(:))
2 Kommentare
Dyuman Joshi
am 2 Feb. 2024
Any particular reason why you are using a double for loop, instead of vectorizing the function handle and the sum?
Akzeptierte Antwort
Dyuman Joshi
am 2 Feb. 2024
Verschoben: Hans Scharler
am 2 Feb. 2024
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
%vectorizing the function handle
f = @(x,y) x.^2+y.^2;
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I1 = sum(sum_f(:))
toc
tic
I2 = sum(f(xs,ys.').*dx.*dy, 'all')
toc
%Using tolerance to compare floating point numbers
abs(I1-I2)<1e-10
2 Kommentare
Mike Croucher
am 5 Feb. 2024
Ahhh loops vs vectors....my old friend. We meet again.
I'm going to let you in on a secret......sometimes loops are faster!
- Original loop with a function call: 0.218 seconds
- Optimised loop with function call removed: 0.025 seconds
- vectorised loop: 0.0275 seconds
So here, my loop version is slightly faster than the vectorised version. What you see might be dependent on machine, problem size and MATLAB version
Observe:
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
%vectorizing the function handle
f = @(x,y) x.^2+y.^2;
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I1 = sum(sum_f(:))
toc
disp('Inline the function call in the loop')
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + (x.^2+y.^2)*dx*dy;
end
end
I1 = sum(sum_f(:))
toc
disp('vectorised version')
tic
I2 = sum(f(xs,ys.').*dx.*dy, 'all')
toc
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Data Type Identification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!