Using parfor to evaluate integrations

2 Ansichten (letzte 30 Tage)
Luqman Saleem
Luqman Saleem am 2 Feb. 2024
Kommentiert: Mike Croucher am 5 Feb. 2024
Probably a stupid question.
I want to integrate a function f(x,y). Can I use parfor() as shown below to compute the sum? I am confused because I consider that each loop over one "ix" value in the following parfor() is run independently from other "ix" values, which means that I must obtain a different "sum_f" for each "ix" value. Right?
clear; clc;
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
f = @(x,y) x^2+y^2;
sum_f = 0;
parfor ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I = sum(sum_f(:))
  2 Kommentare
Dyuman Joshi
Dyuman Joshi am 2 Feb. 2024
Any particular reason why you are using a double for loop, instead of vectorizing the function handle and the sum?
Luqman Saleem
Luqman Saleem am 2 Feb. 2024
@Dyuman Joshi umm.. I don't get you. I am not familiar with "vectorizing" the functions. Do you mean rewriting f(x,y) as
f = @(x,y) arrayfun(@(x,y) f(x,y), x, y)

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Dyuman Joshi
Dyuman Joshi am 2 Feb. 2024
Verschoben: Hans Scharler am 2 Feb. 2024
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
%vectorizing the function handle
f = @(x,y) x.^2+y.^2;
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I1 = sum(sum_f(:))
I1 = 32.0317
toc
Elapsed time is 0.364607 seconds.
tic
I2 = sum(f(xs,ys.').*dx.*dy, 'all')
I2 = 32.0317
toc
Elapsed time is 0.033681 seconds.
%Using tolerance to compare floating point numbers
abs(I1-I2)<1e-10
ans = logical
1
  2 Kommentare
Luqman Saleem
Luqman Saleem am 2 Feb. 2024
Verschoben: Hans Scharler am 2 Feb. 2024
@Dyuman Joshi :-O areee bhai.. that's much more faster. wow. thank you so much
Mike Croucher
Mike Croucher am 5 Feb. 2024
Ahhh loops vs vectors....my old friend. We meet again.
I'm going to let you in on a secret......sometimes loops are faster!
  • Original loop with a function call: 0.218 seconds
  • Optimised loop with function call removed: 0.025 seconds
  • vectorised loop: 0.0275 seconds
So here, my loop version is slightly faster than the vectorised version. What you see might be dependent on machine, problem size and MATLAB version
Observe:
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
%vectorizing the function handle
f = @(x,y) x.^2+y.^2;
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + f(x,y)*dx*dy;
end
end
I1 = sum(sum_f(:))
I1 = 32.0317
toc
Elapsed time is 0.218968 seconds.
disp('Inline the function call in the loop')
Inline the function call in the loop
xmin = -2; xmax = 1;
ymin = 1; ymax = 3;
dx = 0.001;
dy = dx;
xs = xmin:dx:xmax; Nx = length(xs);
ys = ymin:dy:ymax; Ny = length(ys);
tic
sum_f = 0;
for ix = 1:Nx
x = xs(ix);
for iy = 1:Ny
y = ys(iy);
sum_f = sum_f + (x.^2+y.^2)*dx*dy;
end
end
I1 = sum(sum_f(:))
I1 = 32.0317
toc
Elapsed time is 0.025205 seconds.
disp('vectorised version')
vectorised version
tic
I2 = sum(f(xs,ys.').*dx.*dy, 'all')
I2 = 32.0317
toc
Elapsed time is 0.027567 seconds.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Data Type Identification finden Sie in Help Center und File Exchange

Produkte


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by