Unable to solve the collocation equations -- a singular Jacobian encountered.
    5 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
function Sc_1
    % Define constants
    phi = 0.02; 
    R_s = 1738; 
    R_f = 1053;
    S_s = 230000000;
    S_f = 0.18; 
    Cp_s = 1046.7; 
    Cp_f = 3594; 
    K_s = 156;
    K_f = 0.492; 
    We = 0.3;
    Ha = 0.3;
    A = 0.1;
    Pr = 4;
    Q_star = 0.1;
    Ec = 0.1;
    s_1 = 0.1;
    Sc = 0.3;
    s_2 = 0.1;
    Kr = 0.2;
    s_3 =0.1;
    Lb = 0.3;
    Pe = 0.1;
    delta_1 = 0.1;
    k_prime = 0.2;
    k_2prime = 0.1;
    M_0 = 0.6;
    alpha = pi/2;
    n = -0.803;
    B_2 = (1 - phi)^-2.5;
    B_1 = (1-phi)+phi*(R_s/R_f);
    B_4 = ((1-phi)+phi*((R_s*Cp_s)/(R_f*Cp_f)));
    B_3 = ((S_s+2*S_f)-2*phi*(S_f-S_s))/((S_s+2*S_f)+phi*(S_f-S_s));
    B_5 = ((K_s+2*K_f)-2*phi*(K_f-K_s))/((K_s+2*K_f)+phi*(K_f-K_s)); 
    % Solve the BVP
    % Create an options structure with specified tolerances and a Jacobian function
    x = linspace(0, 1, 10);
    options = bvpset('RelTol',1e-6,'AbsTol',1e-6);
    solinit = bvpinit(x, [1 1 1 0 0 0 0 0 0]);
    sol = bvp4c(@bvpexam2, @bcfun, solinit, options);
    x_vals = sol.x;
    y_vals = sol.y;
    % Plot the solutions
    figure(1); 
    plot(x_vals, y_vals(2,:), 'LineWidth', 1.3);
    hold on; % Keep the plot for next iterations
    figure(2); 
    plot(x_vals, y_vals(4,:), 'LineWidth', 1.3);
    hold on; % Keep the plot for next iterations
    figure(3); 
    plot(x_vals, y_vals(6,:), 'LineWidth', 1.3);
    hold on; % Keep the plot for next iterations
    figure(4); 
    plot(x_vals, y_vals(8,:), 'LineWidth', 1.3);
    hold on; % Keep the plot for next iterations
  % Boundary and ODE functions
    function res = bcfun(ya, yb)
        res = [Pr*ya(1) + (B_5/B_1)*M_0*ya(5)-0;
               ya(2) - 1; 
               ya(4)+k_prime*ya(5)-0; 
               ya(6)+k_2prime*ya(7)-0;
               ya(8)-0; 
               yb(2) - A; 
               yb(4) - (1 - s_1); 
               yb(6) - (1 - s_2);
               yb(8) - (1 - s_3)];
    end
   function ysol = bvpexam2(x, y)
         yy1 =  (B_1*(y(2)^2 - y(1) * y(2)) + B_3*sin(alpha)^2*Ha*(y(2)-A) - A^2)/(B_2 + (3*(n-          1)/2)*B_2*We*y(3)*y(3));
         yy2 = ((Pr*B_4)*(s_1*y(2) + y(2)*y(4) - y(1)*y(5))  ...
                - B_2*Pr*Ec*((y(3))^2)*((1+(3*(n-1)/2))*We*(y(3))^2) + Q_star*(y(4)+s_1) ...
                - B_3*Ha*Ec*Pr*((sin(alpha))^2)*((y(2) - A)^2))/B_5;
         yy3 = Sc*(y(2)*y(6) + s_2*y(2) - y(1)*y(7)) - Kr*(y(6)+ 1/s_2);
         yy4 = Lb*(y(8)+s_3) - Lb*y(9) + Pe*(y(9)*y(7) + (y(8)+delta_1+s_3));
         ysol= [y(2); y(3); yy1; y(5); yy2; y(7); yy3; y(8); yy4];
    end
end
7 Kommentare
Antworten (0)
Siehe auch
Kategorien
				Mehr zu Boundary Value Problems finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

