Algae growing. Concentration curve problem

1 Ansicht (letzte 30 Tage)
Alfonso
Alfonso am 23 Jan. 2024
Kommentiert: Alfonso am 2 Feb. 2024
Hi! i have made the following code:
function w = Bioreactor
clc
clear all
% Forward Euler method is used for solving the following boundary value problem:
% Problem parameters
alpha1 = 5*10^(-4); % Diffusion coefficient [m^2/s]
mu0 = 5;
mue = 3.5;
Hl = 5;
T = 5000; % [s]
nz = 100; nt = 1000;
KP = 2;
HP= 7;
PC = 1;
K = 2;
KN = 3;
HN = 14.5*10^(-6);
NC = 2;
KC = 5;
HC = 5 ;
PHs3 = 4 ;
PHs4 = 5;
lambda = 2 ;
rs= 10;
P(1)=3; % Initial chosen concentration of P [g/L]
N(1)=9; % Initial chosen concentration of N [g/L]
C(1)=30; % Initial chosen concentration of C [g/L]
Z = 10; % Lenght of the bioreactor [m]
%Check of the problem's parameters
if any([P(1)-PC N(1)-NC] <=0 )
error('Check problem parameters')
end
if any([alpha1 mu0 Hl Z T nz-2 nt-2 KP P(1) PC HC KN N(1) NC KC HC C(1) HN ] <= 0)
error('Check problem parameters')
end
% Stability
dz = Z/nz;
st = 1/2;
dt = st*dz^2/alpha1;
nt = T/dt;
% Initialization
z = linspace(0,Z,nz+1); t = linspace(0,T,nt+1);
nt = round(nt); % Round nt to an integer
nz = round(nz); % Round nz to an integer
N = zeros(1, nt+1); % Initialize N to zero
P = zeros(1, nt+1); % Initialize P to zero
C = zeros(1, nt+1); % Initialize C to zero
I0 = @(t) 100*max(sin ((t-0.4*3600)/(6.28)) , sin (0));
w = zeros(nz+1,nt+1);
% Finite-difference method
for j = 1:nt
f1= (KP*(P(j)-PC))/(HP+(P(j)-PC));
f2 = (KN*(N(j)-NC))/(HN+(N(j)-NC));
pH = (6.35 - log10(C(j))) /2 ;
f3 = 1/(1+exp(lambda*(pH-PHs3)));
f4 = 1/(1+exp(lambda*(pH-PHs4)));
I_in = I0(t(j)).*exp(-K*z.').*exp((-rs).*cumtrapz(z.',w(:,j)));
g = mu0*I_in./(Hl+I_in);
integral_term = f1 * f2 * f3 * trapz(z.',g.*w(:,j)); % Data organization
N(j+1) = N(j) + dt*( -1/Z*integral_term*N(j)); % Function of N over the time and space
P(j+1) = P(j) + dt*( -1/Z*integral_term*P(j)); % Function of P over the time and space
C(j+1) = C(j) + dt*( -1/Z*integral_term*C(j)); % Function of C over the time and space
w(nz+1,j+1) = 9; % Algae concentration at z=0 [Dirichlet]
w(2:nz,j+1) = w(2:nz,j) + dt*(f1*f2*f3*w(2:nz,j).*g(2:nz) + alpha1 * (w(3:nz+1,j)-2*w(2:nz,j)+w(1:nz-1,j))/dz^2);
w(1,j+1) = w(2,j+1); % Algae concentration at z=10 [Neumann]
plot(z,flipud(w(:,j+1)),'b');
%set(gca,'XDir','reverse');
xlabel('z'); ylabel('w');
title(['t=',num2str(t(j)),' s']);
axis([0 10 0 10]);
pause(0.0001);
end
end
And the code is working perfectly. But the W which is the algae concentration over space and time it has been fixed a value of 9 mg/L at the beginning of this bioreactor, so at z=0, im talking about the following row:
w(nz+1,j+1) = 9; % Algae concentration at z=0 [Dirichlet]
But now i would like to fix this concentration at a certain z which has to be equal to z=Z/2 so at the half of the bioreactor. I know that in order to make the code working for sure i have to modify this row:
w(2:nz,j+1) = w(2:nz,j) + dt*(f1*f2*f3*w(2:nz,j).*g(2:nz) + alpha1 * (w(3:nz+1,j)-2*w(2:nz,j)+w(1:nz-1,j))/dz^2);
Can you help me to do that? I've tried something but anything really worked.
Thanks, attached to this post there is the file from which i took the equations.
I should have a graph like this:

Antworten (1)

Torsten
Torsten am 23 Jan. 2024
Bearbeitet: Torsten am 23 Jan. 2024
Here is a code for a simple heat-conduction equation
dT/dt = d^2T/dz^2
T(z,0) = 0
T(0,t) = 200
T(1,t) = 340
T(0.5,t) = 90
You should be able to adapt it to your application.
L = 1;
zcut = L/2;
n1 = 50;
n2 = 50;
z1 = linspace(0,zcut,n1);
dz1 = z1(2)-z1(1);
z2 = linspace(zcut,L,n2);
dz2 = z2(2)-z2(1);
tstart = 0;
tend = 1;
dt = 1e-5;
nt = round((tend-tstart)/dt);
t = linspace(tstart,tend,nt);
T_at_zcut = 90;
T_at_0 = 200;
T_at_L = 340;
T = zeros(n1+n2-1,nt);
T(1,:) = T_at_0;
T(end,:) = T_at_L;
T(n1,:) = T_at_zcut;
for i = 1:nt-1
T(2:n1-1,i+1) = T(2:n1-1,i) + dt/dz1^2*(T(3:n1,i)-2*T(2:n1-1,i)+T(1:n1-2,i));
T(n1+1:n1+n2-2,i+1) = T(n1+1:n1+n2-2,i) + dt/dz2^2*(T(n1+2:n1+n2-1,i)-...
2*T(n1+1:n1+n2-2,i)+T(n1:n1+n2-3,i));
end
plot([z1,z2(2:end)],[T(:,1),T(:,100),T(:,250),T(:,500),T(:,750),T(:,1000),T(:,2500),T(:,5000),T(:,7500),T(:,end)])
  26 Kommentare
Alfonso
Alfonso am 2 Feb. 2024
Ok, man i will check. At least i didn't check the dimension before D:
Alfonso
Alfonso am 5 Feb. 2024
@Torsten also with the right dimension the code doesn't work very well. Can i ask you a question? If i have this code:
function w = Bioreattore
clc
clear all
% Forward Euler method is used for solving the following boundary value problem:
% Problem parameters
Dm = 5*10^(-4); %m^2/s
mu0 = 8000%2.5; % L/day
mue = 3.5; % 1/day
Hl = 5; %half-saturation intensity W/(m^2*day)
T = 10000; % [s]
nz = 100; nt = 1000;
KP = 2 ;
HP= 7; %half-saturation concentrations of Phosphates
PC = 1; %critical concentration of the phosphates dopo la quale la crescita di w va a 0.
K = 2;
KN = 3 ;
HN = 0.02; %14.5*10^(-6); %half-saturation concentrations of nitrates [mgN/L]
NC = 2; %critical concentration of the nitrates dopo la quale la crescita di w va a 0.
KC = 5;
HC = 5 ;
PHs3 = 9 ; %describes the "switching" value of pH at which the growth increases if all other factors are kept unchanged.
lambda = 2 ; %sharpness of the profile of the f3 function
rs= 10; %L*m/d
P(1)=50; % Initial chosen concentration of P [mg/L]
N(1)=330; % Initial chosen concentration of N [mg/L]
C(1)=2100; % Initial chosen concentration of C/ Aumentando C, si abbassa il pH(+acido) e aumenta la morte algale [mg/L]
Z = 10; % Lenght of the bioreactor
%Check of the problem's parameters
if any([P(1)-PC N(1)-NC] <=0 )
error('Check problem parameters')
end
if any([Dm mu0 Hl Z T nz-2 nt-2 KP P(1) PC HC KN N(1) NC KC HC C(1) HN ] <= 0)
error('Check problem parameters')
end
% Stability
dz = Z/nz;
st = 1/2;
dt = st*dz^2/Dm;
nt = T/dt;
% Initialization
z = linspace(0,Z,nz+1); t = linspace(0,T,nt+1);
nt = round(nt); % Round nt to an integer
nz = round(nz); % Round nz to an integer
N = zeros(1, nt+1); % Initialize N to zero
P = zeros(1, nt+1); % Initialize P to zero
C = zeros(1, nt+1); % Initialize C to zero
I0 = @(t) 100*max(sin ((t-0.4*3600)/(6.28)) , sin (0));
w = zeros(nz+1,nt+1);
w(:,1) = 0; %Final concentration of the algae
% Finite-difference method
for j = 1:nt
f1= (KP*(P(j)-PC))/(HP+(P(j)-PC))
f2 = (KN*(N(j)-NC))/(HN+(N(j)-NC))
pH = (6.35 - log10(C(j))) /2 %relation between the pH and the concentration of carbon dioxide
f3 = 1/(1+exp(lambda*(pH-PHs3))) %The growth rate dependence function. Si riduce se il tutto diventa più acido (pH scende)..
Ha = mue*f3; %death rate of the algae. [gCOD/L]
I_in = I0(t(j)).*exp(-K*z.').*exp((-rs).*cumtrapz(z.',w(:,j))); % W/m^2*s
g = mu0*I_in./(Hl+I_in);
integral_term = f1 * f2 * f3 * trapz(z.',g.*w(:,j)); % Data organization
N(j+1) = N(j) + dt*( -1/Z*integral_term*N(j)); % Function of N over the time and space
P(j+1) = P(j) + dt*( -1/Z*integral_term*P(j)); % Function of P over the time and space
C(j+1) = C(j) + dt*( -1/Z*integral_term*C(j)); % Function of C over the time and space
w(nz+1,j+1) = 5; % Algae concentration at z=0 [gSST/L]
w(2:nz,j+1) = w(2:nz,j) + dt*(f1*f2*f3*w(2:nz,j).*g(2:nz) + Dm * (w(3:nz+1,j)-2*w(2:nz,j)+w(1:nz-1,j))/dz^2)- Ha*w(2:nz,j);
w(1,j+1) = w(2,j+1); % Algae concentration at z=10
plot(z,flipud(w(:,j+1)),'b');
%set(gca,'XDir','reverse');
xlabel('z'); ylabel('w');
title(['t=',num2str(t(j))]);
axis([0 10 0 10]);
pause(0.0001);
end
end
How can i modify the plot to obtain the following graphs:

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by