Second order ordinary differential equation

9 Ansichten (letzte 30 Tage)
Abdul
Abdul am 15 Jan. 2024
Kommentiert: Sam Chak am 16 Jan. 2024
I am trying to find the exact solution of this differential equation, but the error 'explicit solution not found' occur -y''(x) +2cos2x*y(x) -lambda*y(x) =0
  3 Kommentare
Abdul
Abdul am 15 Jan. 2024
I am using the command dsolve for finding the exact solution of this problem. If you have a code that works, kindly share it thanks
Walter Roberson
Walter Roberson am 15 Jan. 2024
The notation is a bit ambiguous.
Note that it matters in the end.
syms y(x) lambda
dy = diff(y);
d2y = diff(dy);
eqn = d2y + 2 * cos(2*x) * y - lambda*y == 0
eqn(x) = 
dsolve(eqn)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]
eqn2 = d2y + 2 * cos(2*x * y) - lambda*y == 0
eqn2(x) = 
dsolve(eqn2)
Warning: Unable to find symbolic solution.
ans = [ empty sym ]

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Sam Chak
Sam Chak am 15 Jan. 2024
I believe that 'explicit solution not found' is more of a notification than an error message. Upon closer inspection, your second-order system appears to resemble the Mathieu Differential Equation. If that's the case, the solution is provided in the form of the Mathieu function. For additional information, please refer to the following file on File Exchange:
  1 Kommentar
Sam Chak
Sam Chak am 16 Jan. 2024
@Abdul, I don't know how to express the Mathieu functions in MATLAB, but I simulated the Mathieu differential equation for different values of lambda (λ) to observe the stability of the solutions.
lambda = 1:6;
t = 0:0.01:60;
y0 = [1; 0];
for j = 1:numel(lambda)
sol = ode45(@(t, y) MathieuDE(t, y, lambda(j)), t, y0);
y = deval(sol, t);
subplot(2, 3, j)
plot(y(1,:), y(2,:)), grid on
xlabel('y_{1}'), ylabel('y_{2}')
title("\lambda = "+string(lambda(j)))
axis equal
end
%% Mathieu Differential Equation
function dydt = MathieuDE(t, y, lambda)
dydt = zeros(2, 1);
dydt(1) = y(2);
dydt(2) = 2*cos(2*t)*y(1) - lambda*y(1);
end

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by