Evaluate Inverse Laplace transform of a rational function
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
proy
am 2 Jan. 2024
Kommentiert: Dyuman Joshi
am 2 Jan. 2024
Hello.
I have the following rational function:
((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472)
When I try to find Inverse Laplace Transform, I got the following answer:
(4277106574556691*dirac(t))/1152921504606846976 + (9189017890449910061927721134279467*symsum((exp(root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)*t)*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 679757729180367744), k, 1, 4))/9007199254740992 - (9774801846638324177398136662629971*symsum(exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/2251799813685248 + (1630461552184412442890819099501081*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/18014398509481984 - (380468160178698203651280037243045*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/1152921504606846976
How do I evaluate this function at some points? Like t=1? There are other variables and I can't evaluate the expression.
0 Kommentare
Akzeptierte Antwort
Dyuman Joshi
am 2 Jan. 2024
syms u
%Expression
fun = ((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472);
%Inverse laplace of the expression, w.r.t the specified variable
%t is the default symbolic variable for inv laplace
FUN = ilaplace(fun, u);
out = subs(FUN, u, 1)
Now, you can use vpa() or double() to obtain the numerical value -
val1 = vpa(out)
val2 = double(out)
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Assumptions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
