recreating in matlab Butterworth Filter filter response
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
fima v
am 30 Dez. 2023
Bearbeitet: Sulaymon Eshkabilov
am 30 Dez. 2023
There is a manual which presents a filter response. In the video they present a formula and a plot of the response. However when I tried to implement it in MATLAB I get a totally different plot. Where did I go wrong implementing this formula?
plots and code of the blog and my impelentation are attached.
Thanks.
clc
clear all
s=0:0.01:50;
H=1./((s/20.01).^4+2.6131*(s/20.01).^3+3.4142*(s/20.01).^2+2.6131*(s/20.01)+1);
plot(s,20*log10(abs(H)))
0 Kommentare
Akzeptierte Antwort
Sulaymon Eshkabilov
am 30 Dez. 2023
Here is the complete corrected code (figure 2 is from your code which is correct):
w1 = 20.01;
w2 = 24.36;
H1=tf(1,[1/(w1^4), 2.6131/(w1^3), 3.4142/(w1^2), 2.6131/w1, 1]);
H2=tf(1,[1/(w2^4), 2.6131/(w2^3), 3.4142/(w2^2), 2.6131/w2, 1]);
figure
w = linspace(0,50,200);
[MAG1,~] = bode(H1,w);
[MAG2,~] = bode(H2,w);
MAG1 = squeeze(MAG1);
MAG2 = squeeze(MAG2);
plot(w, 20*log10(MAG1), 'b-', w, 20*log10(MAG2), 'r-','LineWidth', 2)
xlabel('\omega, [rad/s]')
ylabel('Freq. Response, [dB]')
legend('@ \omega_1 = 20.01 [rad/s]', '@ \omega_2 = 24.36 [rad/s]', 'Location', 'Best')
grid on
figure
s=0:0.01:50;
H1=1./((s/w1).^4+2.6131*(s/w1).^3+3.4142*(s/w1).^2+2.6131*(s/w1)+1);
H2=1./((s/w2).^4+2.6131*(s/w2).^3+3.4142*(s/w2).^2+2.6131*(s/w2)+1);
plot(s,20*log10(abs(H1)), 'r', s, 20*log10(abs(H2)), 'b', 'LineWidth', 2)
xlabel('\omega, [rad/s]')
ylabel('20*log10|H(\omega)|')
legend('@ \omega_1 = 20.01 [rad/s]', '@ \omega_2 = 24.36 [rad/s]', 'Location', 'Best')
grid on
3 Kommentare
Sulaymon Eshkabilov
am 30 Dez. 2023
(1) "~" in [MAG1,~] = bode(H1,w) means skip phase values
(2) Both plots will be the same if s = 1i*w is used:
w1 = 20.01;
w2 = 24.36;
figure
s=0:0.01:50;
H1=1./((1i*s/w1).^4+2.6131*(1i*s/w1).^3+3.4142*(1i*s/w1).^2+2.6131*(1i*s/w1)+1);
H2=1./((1i*s/w2).^4+2.6131*(1i*s/w2).^3+3.4142*(1i*s/w2).^2+2.6131*(1i*s/w2)+1);
plot(s,20*log10(abs(H1)), 'r', s, 20*log10(abs(H2)), 'b', 'LineWidth', 2)
xlabel('\omega, [rad/s]')
ylabel('Freq Response, [dB]')
legend('@ \omega_1 = 20.01 [rad/s]', '@ \omega_2 = 24.36 [rad/s]', 'Location', 'Best')
grid on
Sulaymon Eshkabilov
am 30 Dez. 2023
Bearbeitet: Sulaymon Eshkabilov
am 30 Dez. 2023
Great! Thumbs up :)
Weitere Antworten (1)
Chunru
am 30 Dez. 2023
Bearbeitet: Chunru
am 30 Dez. 2023
It seems that there is a confusion in s-domain and omega domain.
The following is the Laplace Transform in s-domain. The plotting is for real value of s.
s=(0:0.01:2*pi)*20.01;
H=1./((s/20.01).^4+2.6131*(s/20.01).^3+3.4142*(s/20.01).^2+2.6131*(s/20.01)+1);
plot(s,20*log10(abs(H)));
xlabel("s")
ylabel("20*log10(abs(H(s))");
The following is in omega domain (
) which is related to the frequency response and it is what one would expect.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1579211/image.png)
omega = (0:0.01:2*pi)*20.01;
s = 1i*omega;
H=1./((s/20.01).^4+2.6131*(s/20.01).^3+3.4142*(s/20.01).^2+2.6131*(s/20.01)+1);
plot(omega, 20*log10(abs(H)));
xlabel("\omega")
ylabel("20*log10(abs(H(j\omega))")
0 Kommentare
Siehe auch
Kategorien
Mehr zu Filter Analysis finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!