4次のルンゲクッタ法に関して
45 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
= (:角速度 τ:トルク I:慣性行列)の式より得られた角加速度を4次のルンゲクッタを用いて1ステップ時間ごとに数値積分し,角速度,角度を求めたいのですが,実装の方法が分かりません.
Excelファイルの角加速度データを用いて,4次のルンゲクッタの計算方法に関し,,教えていただきたいです.
0 Kommentare
Antworten (1)
covao
am 13 Jan. 2024
(スクリプト作成に生成AIを利用しています)
角加速度データは、サンプリング時間0.01[sec]、単位:[rad/sec^2]を仮定しています。
% Load angular acceleration data from Excel file
excelFile = 'https://jp.mathworks.com/matlabcentral/answers/uploaded_files/1564584/Book1.xlsx'; % Set the path of the Excel file
angularAccelData = readmatrix(excelFile);
% Generate time data
dt = 0.01; % Assume time step
timeData = (0:dt:dt*(length(angularAccelData)-1))';
% Define angular acceleration as a function of time
angularAccelFunc = @(t) interp1(timeData, angularAccelData, t, 'linear', 'extrap');
% Initial conditions
initialConditions = [0; 0]; % Initial angle 0 radians, initial angular velocity 0 rad/sec
% Solve the ordinary differential equation using ode45 solver
[t, y] = ode45(@(t, y) angularMotionODE(t, y, angularAccelFunc), timeData, initialConditions);
theta = y(:, 1);
omega = y(:, 2);
alpha = angularAccelFunc(t);
% Plotting the results
% Alpha (Angular Acceleration)
subplot(3,1,1);
plot(t, alpha);
xlabel('Time [sec]');
ylabel('Alpha [rad/sec^2]');
% Omega (Angular Velocity)
subplot(3,1,2);
plot(t, omega);
xlabel('Time [sec]');
ylabel('Omega [rad/sec]');
% Theta (Angle)
subplot(3,1,3);
plot(t, theta);
xlabel('Time [sec]');
ylabel('Theta [rad]');
% Function to solve the ordinary differential equation
function dy = angularMotionODE(t, y, angularAccelFunc)
dy = zeros(2,1);
dy(1) = y(2); % y(1) is angle, y(2) is angular velocity
dy(2) = angularAccelFunc(t); % Angular acceleration
end
0 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!