Solve a function and plot its contour plot. Not getting the desired contour plot?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
AD
am 4 Dez. 2023
Beantwortet: Walter Roberson
am 5 Dez. 2023
I have defined the temperature field as Z..and want to plot the temperature contour. However, I am unable to get the desired contour plot. Can someone please help me with this? I have also trield fcontour by defining X,Y as variables..but with no results.
P = 50;
v = 0.1;
k = 113;
Tm = 843;
T0 = 300;
a = 4.63 * 10^(-5);
eps = 0.9;
sig = 5.67 * 10^-8;
A = 10^-5;
kp = 0.21;
x = linspace(-3, 3);
y = linspace(-3, 0);
% Remove NaN values by replacing them with a default value (e.g., 0)
x(x == 0) = 0;
y(y == 0) = 0;
[X, Y] = meshgrid(x, y);
% Ensure that r is not zero to avoid division by zero issues
r = sqrt((X.*(10^-3)).^2 + (Y.*(10^-3)).^2);
r(r == 0) = 10^-6; % Replace zeros with a small value (eps) to avoid division by zero
Z = (1./(4*k*pi.*r.*(Tm-T0))) .* (P * exp((-v.*(r+X.*10^-3))./(2*a)) - A*(h.*(Z-T0)+eps*sig*(Z.^4-T0^4)+(kp.*(Z-T0)./r)));
figure
contourf(X, Y, Z)
colorbar;
8 Kommentare
Walter Roberson
am 5 Dez. 2023
Because of the Z.^4 on the right hand size, you are defining a quartic -- a polynomial in degree 4. There are 4 solutions for each point. An even number of those solutions will be real-valued.
Akzeptierte Antwort
Walter Roberson
am 5 Dez. 2023
%h was not defined in original code -- make sure you assign a meaningful
%value!
h = 1;
syms X Y Z real
Q = @(v) sym(v);
P = Q(50);
v = Q(0.1);
k = Q(113);
Tm = Q(843);
T0 = Q(300);
a = Q(463) * Q(10)^(-7);
eps = Q(0.9);
sig = Q(567) * Q(10)^-10;
A = Q(10)^-5;
kp = Q(0.21);
Pi = Q(pi);
R = sqrt((X.*(Q(10)^-3)).^2 + (Y.*(Q(10)^-3)).^2);
r = piecewise(R == 0, 1e-6, R);
eqn = Z == (1./(4*k*Pi.*r.*(Tm-T0))) .* (P * exp((-v.*(r+X.*10^-3))./(2*a)) - A*(h.*(Z-T0)+eps*sig*(Z.^4-T0^4)+(kp.*(Z-T0)./r)));
zsol = solve(eqn, Z, 'returnconditions', true)
x = linspace(-3, 3);
y = linspace(-3, 0);
[xG, yG] = meshgrid(x, y);
%warning: zsolfun returns a matrix and must be invoked on scalars!
zsolfun = matlabFunction(reshape(zsol.Z, 1, 1,[]), 'File', 'zsol.m', 'Vars', [X, Y], 'optimize', false);
zcondfun = matlabFunction(reshape(zsol.conditions, 1, 1, []), 'File', 'zcond.m', 'Vars', [X, Y], 'optimize', false);
[xG, yG] = meshgrid(x, y);
Zcell = arrayfun(zsolfun, xG, yG, 'uniform', 0);
Zmat = cell2mat(Zcell);
Zcondcell = arrayfun(zcondfun, xG, yG, 'uniform', 0);
Zcond = cell2mat(Zcondcell);
for L = 1 : size(Zcond,3)
mask = ~Zcond(:,:,L);
layer = Zmat(:,:,L);
layer(mask) = NaN;
if nnz(~isnan(layer)) == 0; continue; end
figure;
subplot(2,1,1)
contour(xG, yG, layer, 7);
colorbar();
title("root #" + L);
subplot(2,1,2)
scatter(xG(:), yG(:), [], layer(:));
colorbar();
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Line Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!