Financial optimization of heston
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Simon Christensen
am 3 Dez. 2023
Kommentiert: Dyuman Joshi
am 26 Dez. 2023
Hi Matlab,
At the moment I'm pricing options, and I have written the code below to calibrate a pricing-model (the model is shown below here)
function [Call_SV] = Price_SV(Sigma, Kappa, Theta, eta, VIX, vT, vt, K, r, y)
Alpha= (1-exp(-Kappa.*((30./365))))./(Kappa.*(30./365));
Beta = (Theta).*(1-Alpha);
%c_2 = (2.*Kappa)./(eta.^2.*(1-exp(-Kappa.*(vT-vt))));
%w = c_2.*(V.*exp(-Kappa.*(vT-vt)));
%q = ((2.*Kappa.*Theta)./(eta.^2))-1;
%I_q = besseli(q,2.*sqrt(w.*c_2.*y));
%gV = c_2.*exp(-w-c_2.*y).*((c_2./y)./w).^(q/2).*I_q
c_2 = (2.*Kappa)./((eta.^2).*(1-exp(-Kappa.*(vT-vt))));
w = c_2.*(((((VIX.^2)-Beta)./Alpha)).*exp(-Kappa.*(vT-vt)));
q = ((2.*Kappa.*Theta)./(eta.^2))-1;
X = 2.*sqrt(w.*c_2.*((y.^2 -Beta)./Alpha));
I_q = besseli(q, X);
gV_inv = ((2.*y)./Alpha).*(c_2.*exp(-w-c_2.*((y.^2 -Beta)./Alpha)).*((c_2./((y.^2 -Beta)./Alpha))./w).^(q/2).*I_q);
INT = integral(@(y) max(y-K,0).*gV_inv, 0, inf, 'RelTol',0,'AbsTol',1e-8);
Call_SV = exp(-r.*(vT-vt)).*INT;
%Feller 2*Kappa*Theta > eta
%con1 = 2.*Kappa.*Theta > eta;
%other condition y > sqrt(Beta) (otherwise zero)
%con2 = y > sqrt(Beta);
end
%Test the model: Price_SV(0.61, 3.21, 0.19, 0.7, 1, 0.8, 0.7, 2, 0.1, 5)
Now my question is, how do I write code to calibrate my model?
I have to minimize sum of squarred residuals (using lqsnonlin), but how do I write the code?
Attempt:
%Price_SV(Sigma, Kappa, Theta, eta, VIX, vT, vt, K, r, y)
% Estimate model parameters
options = optimoptions('lsqnonlin','Display', 'iter-detailed', 'PlotFcn', 'optimplotresnorm', 'MaxIterations', 10000, 'TolFun', 10^-12 );
lsqnonlin(@Error, [0.5 0.5 0.5 0.7 0 0], [0 0 0 0 0], [10 10 10 10 10], options)
where Error is sum(data-Price_SV).^2
Any help appreciatet, really struling with this one, thanks alot!
Best regards Karnow
17 Kommentare
Akzeptierte Antwort
Torsten
am 3 Dez. 2023
Verschoben: Torsten
am 3 Dez. 2023
Assuming that Price_SV returns a vector of the same size as P_data, your call would look somehow like
fun =@(p)Price_SV(p(1), p(2), p(3), p(4), p(5), vT, vt, K, r, yconst) - P_data;
p0 = [0.61, 3.21, 0.19, 0.7, 1];
p = lsqnonlin(fun,p0)
or maybe
fun = @(p)arrayfun(@(K,P_data)Price_SV(p(1), p(2), p(3), p(4), p(5), vT, vt, K, r, yconst) - P_data,K,P_data)
if each element of K(i) gives the value of Price_SV(i) that is to be compared with P_data(i).
10 Kommentare
Torsten
am 3 Dez. 2023
%Price_SV(Sigma, Kappa, Theta, eta, VIX, vT, vt, K, r)
%https://se.mathworks.com/help/fininst/calibrate-option-pricing-model-using-heston-model.html
rho_J =0
Mu_V =0
Mu_S =0
Lambda =0
S = [Spot(2), Spot(3) Spot(4), Spot(5), Spot(6)]
%concatenate prices, real and theo:
Prices_true= [m2(:,2,1); m3(:,2,1); m4(:,2,1); m5(:,2,1); m6(:,2,1)]
K_true= [m2(:,3,1); m3(:,3,1); m4(:,3,1); m5(:,3,1); m6(:,3,1)]
S_array = [S(1)*ones(size(m2(:,2,1)));...
S(2)*ones(size(m3(:,2,1)));...
S(3)*ones(size(m4(:,2,1)));...
S(4)*ones(size(m5(:,2,1)));...
S(5)*ones(size(m6(:,2,1)))];
r_array = [r(2)*ones(size(m2(:,2,1)));...
r(3)*ones(size(m3(:,2,1)));...
r(4)*ones(size(m4(:,2,1)));...
r(5)*ones(size(m5(:,2,1)));...
r(6)*ones(size(m6(:,2,1)))];
vT_array = [vT(2)*ones(size(m2(:,2,1)));...
vT(3)*ones(size(m3(:,2,1)));...
vT(4)*ones(size(m4(:,2,1)));...
vT(5)*ones(size(m5(:,2,1)));...
vT(6)*ones(size(m6(:,2,1)))];
vt_array = [vt(2)*ones(size(m2(:,2,1)));...
vt(3)*ones(size(m3(:,2,1)));...
vt(4)*ones(size(m4(:,2,1)));...
vt(5)*ones(size(m5(:,2,1)));...
vt(6)*ones(size(m6(:,2,1)))];
fun = @(Param)arrayfun(@(K_true,Prices_true,S_array,r_array,vT_array,vt_array)Prices_true-SV_Heston(Param(1), Param(2), Param(3), Param(4), Param(5), rho_J, Mu_V, Mu_S, Lambda, S_array, K_true, r_array, vT_array, vt_array, 0.25),K_true,Prices_true,S_array,r_array,vT_array,vt_array);
p0 = [3 0.25 0.25 0.25 0.095];
lb = [0 0 0 0 0]
sol = lsqnonlin(fun, p0, lb)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Surrogate Optimization finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!